Diagnostics of anti-seepage screen at a~tailings dam in permafrost based on the solution of an inverse problem by piezometric measurement data
Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 1, pp. 73-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a nonlinear geomechanical model of rock mass in the vicinity of a tailings dam in the permafrost zone at the Kumtor Mine in the Kyrgyz Republic. The model takes into account information on the structure of the object and the data on the deformation, strength, thermophysical, and filtration characteristics of frozen and thawed ground, as well as on the seasonal oscillations of air temperature. The numerical experiments show that, under unchanged external conditions, rock mass properties, and the position of the neutral layer, the zero isotherm, separating the frozen and thawed rocks, attains a stationary position in 12–15 years after the filling of the tailings pond and that a slight rupture of the anti-seepage screen can result in a large damage zone in the dam. Synthetic data are used to illustrate the solvability of the boundary value inverse problem of finding the time and place of the rupture in the anti-seepage screen from piezometric measurements in a few observation holes.
Keywords: heat-and-mass transfer, stressed state, protection dam, permafrost, anti-seepage screen, finite element method, inverse problem.
@article{SJIM_2016_19_1_a6,
     author = {L. A. Nazarova and L. A. Nazarov},
     title = {Diagnostics of anti-seepage screen at a~tailings dam in permafrost based on the solution of an inverse problem by piezometric measurement data},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {73--81},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a6/}
}
TY  - JOUR
AU  - L. A. Nazarova
AU  - L. A. Nazarov
TI  - Diagnostics of anti-seepage screen at a~tailings dam in permafrost based on the solution of an inverse problem by piezometric measurement data
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2016
SP  - 73
EP  - 81
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a6/
LA  - ru
ID  - SJIM_2016_19_1_a6
ER  - 
%0 Journal Article
%A L. A. Nazarova
%A L. A. Nazarov
%T Diagnostics of anti-seepage screen at a~tailings dam in permafrost based on the solution of an inverse problem by piezometric measurement data
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2016
%P 73-81
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a6/
%G ru
%F SJIM_2016_19_1_a6
L. A. Nazarova; L. A. Nazarov. Diagnostics of anti-seepage screen at a~tailings dam in permafrost based on the solution of an inverse problem by piezometric measurement data. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 1, pp. 73-81. http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a6/

[1] Lushnikova O. A., “Osobennosti stroitelstva v raionakh Krainego Severa i na priravnennykh k nim territoriyakh”, Vestn. Uralsk. gos. un-ta, 28:2 (2009), 34–37

[2] Ferrians A., Katchadoorian R., Greene G., Permafrost and Related Engineering Problems in Alaska, Geological Survey Paper 678, 1969

[3] Sayles F. H., Special Report 87-11 July US Army Corps of Engineers Cold Regions Research Engineering Laboratory Embankment Dams on Permafrost Design and Performance Summary, Bibliography and an Annotated Bibliography, 1987

[4] Sobol S. V., Vodokhranilischa v oblasti vechnoi merzloty, izd. NNGASU, N. Novgorod, 2007

[5] Aksenov V. A., “Koeffitsienty dlya korrektirovki znachenii modulei deformatsii, poluchennykh v rezultate kompressionnykh ispytanii merzlykh gruntov”, Almanakh “Prostranstvo i Vremya”, 4:1, Spets. vyp. “Sistema Planeta Zemlya” (2013) URL: http://j-spacetime.com/actual content/t4v1/2227-9490e-aprovr_e-ast4-1.2013.73.php

[6] Qina Y., Zhanga J., Zhenga B., Maa X., “Experimental study for the compressible behavior of warm and ice-rich frozen soil under the embankment of Qinghai–Tibet railroad”, Cold Regions Sci. and Technology, 57:2–3 (2009), 148–153 | DOI

[7] Seifert R. D., Permafrost: A Building Problem in Alaska, Univ. of Alaska Fairbanks Cooperative Extension Service. HCM-00754

[8] Vliyanie GES na okruzhayuschuyu sredu v usloviyakh Krainego Severa, izd. Yakutsk. filiala SO AN SSSR, Yakutsk, 1987

[9] SNiP 2.01.01-82. Stroitelnaya klimatologiya i geofizika

[10] Proekt Kumtor-zoloto, Tekhn.-ekonom. obosnovanie. Kilborn proekt S566-15, Kumtor Operating Company, 1993

[11] Osmonbetova D. K., “Sovremennoe ekologicheskoe sostoyanie v raione verkhnego techeniya r. Naryn i prognoznye otsenki v svyazi s razrabotkoi zolotorudnogo mestorozhdeniya”, Zap. Kirgizsko-slavyanskogo un-ta, 11:3 (2011), 50–53

[12] URL: http://www.vb.kg/244692

[13] Guvanasen V., Chan T., “A three-dimensional numerical model for thermohydromechanical deformation with hysteresis in a fractured rock mass”, Internat. J. Rock Mech. and Min. Sci., 37:1–2 (2000), 89–106 | DOI

[14] McKenzie J. M., Voss C. I., Siegel D. I., “Groundwater flow with energy transport and waterice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs”, Adv. Water Resourse, 30 (2007), 966–983 | DOI

[15] Kolmogorov A. V., Protodyakonova N. A., “Matematicheskoe modelirovanie reologicheskikh deformatsii nasyschennoi poristoi sredy pri fazovykh perekhodakh porovoi vlagi”, Nauka i obrazovanie, 2007, no. 1, 77–83

[16] Stetyukha V. A., “Osobennosti modelirovaniya teplomassoperenosa v usloviyakh rasprostraneniya vysokotemperaturnykh mnogoletnemerzlykh porod”, Gornyi inform.-anal. byull., 2009, no. 3, 293–297

[17] Coussy O., Poromechanics, John Wiley Son, Chichester, 2004

[18] Jiao Y., Hudson J. A., “The fully-coupled model for rock engineering system”, Internat. J. Rock Mech. Mineral Sci., 32:5 (1995), 491–512 | DOI

[19] Nazarova L. A., Nazarov L. A., Dzhamanbaev M. D., Chanybaev M. K., “Evolyutsiya termogidrodinamicheskikh polei v okrestnosti zaschitnoi damby khvostokhranilischa rudnika Kumtor (Kyrgyzskaya Respublika)”, Fiz.-tekhn. problemy razrabotki poleznykh iskopaemykh, 2015, no. 1, 23–29

[20] Goncharov S. A., Termodinamika, Izd-vo Mosk. gos. gornogo un-ta, M., 2002

[21] Fjar E., Holt R. M., Raaen A. M. et al., Petroleum Related Rock Mechanics, Elsevier, Amsterdam, 2008

[22] Turchaninov I. A., Iofis M. A., Kasparyan E. V., Osnovy mekhaniki gornykh porod, Nedra, L., 1989

[23] Jaeger J., Cook N. G., Zimmerman R., Fundamentals of Rock Mechanics, Wiley-Blackwell, Oxford, 2007

[24] http://www.gismeteo.ru

[25] Tsoi P. A., Nazarova L. A., Dzhamanbaev M. D., “Eksperimentalnoe opredelenie deformatsionno-prochnostnykh parametrov merzlykh porod pri razlichnoi temperature i ldistosti”, Materialy 24 Mezhdunar. nauch. shkoly im. akad S. A. Khristianovicha, izd. Tavrich. nats. un-ta, Simferopol, 2014, 245–247

[26] Novatskii V., Teoriya uprugosti, Mir, M., 1975 | MR

[27] Svod pravil 39.13330.2012. Plotiny iz gruntovykh materialov. Aktualizirovannaya redaktsiya SNiP 2.06.05-84, Data vvedeniya 2013-01-01

[28] Nazarova L. A., “Napryazhennoe sostoyanie naklonno-sloistogo massiva gornykh porod vokrug vyrabotki”, Fiz.-tekhn. problemy razrabotki poleznykh iskopaemykh, 1985, no. 2, 33–37

[29] Nazarova L. A., “Modelirovanie ob'emnykh polei napryazhenii v razlomnykh zonakh zemnoi kory”, Dokl. AN, 342:6 (1995), 804–808

[30] Ischenko V., Obespechenie filtratsionnoi bezopasnosti i effektivnosti protivofiltratsionnykh ustroistv gidrotekhnicheskikh sooruzhenii, izd. SKNTsVSh, Rostov-na-Donu, 2007

[31] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR

[32] Romanov V. G., “Ob odnoi obratnoi zadache dlya uravneniya parabolicheskogo tipa”, Mat. zametki, 19:4 (1976), 595–600 | MR | Zbl

[33] Alifanov O. M., Obratnye zadachi teploobmena, Mashinostroenie, M., 1988

[34] Duchkov A. A., Karchevskii A. L., “Opredelenie glubinnogo teplovogo potoka po dannym monitoringa temperatury donnykh osadkov”, Sib. zhurn. industr. matematiki, 16:3 (2013), 61–85 | MR | Zbl

[35] Karchevsky A. L., “Reformulation of an inverse problem statement that reduces computational costs”, Eurasian J. Math. Comput. Appl., 1:2 (2013), 5–20

[36] Nazarov L. A., Nazarova L. A., Karchevskii A. L., Panov A. V., “Otsenka napryazhenii i deformatsionnykh svoistv porodnykh massivov na osnove resheniya obratnoi zadachi po dannym izmerenii smeschenii na svobodnykh granitsakh”, Sib. zhurn. industr. matematiki, 15:4 (2012), 102–109 | Zbl

[37] Avriel M., Nonlinear Programming: Analysis and Methods, Dover Publ., N.Y., 2003 | MR | Zbl