A joint creeping motion of three fluids in a~flat layer: a~priori estimates and convergence to a~stationary regime
Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 1, pp. 3-17

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a partially invariant solution of rank 2 and defect 3e to the equations of a viscous heat-conducting fluid. It is interpreted as a two-dimensional motion of three immiscible fluids in a flat channel bounded by solid walls for which the distribution of temperature is known. From a mathematical point of view, the resulting initial boundary value problem is nonlinear and inverse. Under some assumptions (often fulfilled in practical applications), the problem is replaced by a linear one. We obtain a priori estimates as well as the exact stationary solution and prove that, the solution tends to a stationary regime if the temperatures of the walls stabilize with time.
Keywords: thermocapillarity, a priori estimate, conjugate boundary value problem, asymptotic behavior.
@article{SJIM_2016_19_1_a0,
     author = {V. K. Andreev and E. N. Cheremnykh},
     title = {A joint creeping motion of three fluids in a~flat layer: a~priori estimates and convergence to a~stationary regime},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a0/}
}
TY  - JOUR
AU  - V. K. Andreev
AU  - E. N. Cheremnykh
TI  - A joint creeping motion of three fluids in a~flat layer: a~priori estimates and convergence to a~stationary regime
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2016
SP  - 3
EP  - 17
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a0/
LA  - ru
ID  - SJIM_2016_19_1_a0
ER  - 
%0 Journal Article
%A V. K. Andreev
%A E. N. Cheremnykh
%T A joint creeping motion of three fluids in a~flat layer: a~priori estimates and convergence to a~stationary regime
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2016
%P 3-17
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a0/
%G ru
%F SJIM_2016_19_1_a0
V. K. Andreev; E. N. Cheremnykh. A joint creeping motion of three fluids in a~flat layer: a~priori estimates and convergence to a~stationary regime. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a0/