A joint creeping motion of three fluids in a~flat layer: a~priori estimates and convergence to a~stationary regime
Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 1, pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a partially invariant solution of rank 2 and defect 3e to the equations of a viscous heat-conducting fluid. It is interpreted as a two-dimensional motion of three immiscible fluids in a flat channel bounded by solid walls for which the distribution of temperature is known. From a mathematical point of view, the resulting initial boundary value problem is nonlinear and inverse. Under some assumptions (often fulfilled in practical applications), the problem is replaced by a linear one. We obtain a priori estimates as well as the exact stationary solution and prove that, the solution tends to a stationary regime if the temperatures of the walls stabilize with time.
Keywords: thermocapillarity, a priori estimate, conjugate boundary value problem, asymptotic behavior.
@article{SJIM_2016_19_1_a0,
     author = {V. K. Andreev and E. N. Cheremnykh},
     title = {A joint creeping motion of three fluids in a~flat layer: a~priori estimates and convergence to a~stationary regime},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a0/}
}
TY  - JOUR
AU  - V. K. Andreev
AU  - E. N. Cheremnykh
TI  - A joint creeping motion of three fluids in a~flat layer: a~priori estimates and convergence to a~stationary regime
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2016
SP  - 3
EP  - 17
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a0/
LA  - ru
ID  - SJIM_2016_19_1_a0
ER  - 
%0 Journal Article
%A V. K. Andreev
%A E. N. Cheremnykh
%T A joint creeping motion of three fluids in a~flat layer: a~priori estimates and convergence to a~stationary regime
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2016
%P 3-17
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a0/
%G ru
%F SJIM_2016_19_1_a0
V. K. Andreev; E. N. Cheremnykh. A joint creeping motion of three fluids in a~flat layer: a~priori estimates and convergence to a~stationary regime. Sibirskij žurnal industrialʹnoj matematiki, Tome 19 (2016) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/SJIM_2016_19_1_a0/

[1] Andreev V. K., Zakhvataev V. E., Ryabitskii E. A., Termokapillyarnaya neustoichivost, Nauka, Novosibirsk, 2000 | MR

[2] Nepomnyashii A., Simanovskii I., Legros J.-C., Interfacial Convection in Multilayer System, Springer-Verl., N.Y., 2006 | MR

[3] Narayanan R., Schwabe D., Interfacial Fluid Gynamics and Transport Processes, Springer-Verl., Berlin–Heidelberg–New York, 2003 | MR

[4] Zeytovnian R. Kh., Convection in Fluids, Springer-Verl., Dordrecht–Heidelberg–London–New York, 2009 | MR

[5] Andreev V. K., Reshenie Birikha uravnenii konvektsii i nekotorye ego obobscheniya, Preprint No 1-10, IVM SO RAN, Krasnoyarsk, 2010, 68 pp.

[6] Andreev V. K., Kaptsov O. V., Pukhnachov V. V., Radionov A. A., Applications of Group-Theoretical Methods in Hydrodynamics, Kluwer Acad. Publ., Dordrecht–Boston–London, 1998 | MR | Zbl

[7] Andreev V. K., Gaponenko Y. A., Goncharova O. N., Pukhnachov V. V., Mathematical Models of Convection, Walter de Gruyter, Berlin–Boston, 2012 | MR

[8] Napolitano L. G., “Plane Marangoni–Poiseuille flow two immiscible fluids”, Acta Astronautica, 7:4–5 (1980), 461–478 | DOI | Zbl

[9] Andreev V. K., Bekezhanova V. B., Ustoichivostneizotermi cheskikh zhidkostei, Izd-vo SFU, 2010

[10] Andreev V. K., “Ob odnoi sopryazhennoi nachalno-kraevoi zadache”, Differents. uravneniya, 44:12 (2008), 1667–1673 | MR | Zbl

[11] Andreev V. K., Bekezhanova V. B., “Stability of non-isothermal fluids”, J. Appl. Mech. Tech. Phys., 54:2 (2013), 171–184 | DOI | MR | Zbl

[12] Andreev V. K., Lemeshkova E. N., “Evolyutsiya termokapillyarnogo dvizheniya trekh zhidkostei v ploskom sloe”, Prikl. matematika i mekhanika, 78:4 (2014), 485–492 | MR

[13] Denisova I. V., “On the problem of thermocapillary convection for two incompressible fluids separated by a closed interface”, Progr. Nonlinear Differential Equations Appl., 61 (2005), 45–64 | MR | Zbl

[14] Denisova I. V., “Thermocapillary convection problem for two compressible immiscible fluids”, Microgravity Sci. Technol., 20:3–4 (2008), 287–291 | DOI

[15] Lemeshkova E. N., “O neravenstve Fridrikhsa dlya oblasti, sostoyaschei iz trekh otrezkov”, Nekotorye aktualnye problemy sovremennoi matematiki i matematicheskogo obrazovaniya: Gertsenovskie chteniya, Materialy nauch. konf. (11–16 aprelya 2011), ParkKom, SPb., 2011, 80–84