Existence and uniqueness of a~soluton to the nonstationary transport equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 4, pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of finding the flux density of particles whose transport process is described by a nonstationary integro-differential equation. We study the case that the medium in which the process takes place is inhomogeneous; in other words, the coefficients of the equation may have jumps of the first kind. The initial data is the density of the intput flux and the density at the initial time moment. A solution to the problem is understood in the weak sense. It is shown that a solution exists, is unique, and can be represented as a uniformly convergent series.
Keywords: tomography, discontinuous coefficients of the equation.
Mots-clés : transport equation
@article{SJIM_2015_18_4_a0,
     author = {E. Yu. Balakina},
     title = {Existence and uniqueness of a~soluton to the nonstationary transport equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_4_a0/}
}
TY  - JOUR
AU  - E. Yu. Balakina
TI  - Existence and uniqueness of a~soluton to the nonstationary transport equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2015
SP  - 3
EP  - 8
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2015_18_4_a0/
LA  - ru
ID  - SJIM_2015_18_4_a0
ER  - 
%0 Journal Article
%A E. Yu. Balakina
%T Existence and uniqueness of a~soluton to the nonstationary transport equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2015
%P 3-8
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2015_18_4_a0/
%G ru
%F SJIM_2015_18_4_a0
E. Yu. Balakina. Existence and uniqueness of a~soluton to the nonstationary transport equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 4, pp. 3-8. http://geodesic.mathdoc.fr/item/SJIM_2015_18_4_a0/

[1] Prilepko A. I., Ivankov A. L., “Obratnye zadachi opredeleniya koeffitsienta i pravoi chasti nestatsionarnogo mnogoskorostnogo uravneniya perenosa po pereopredeleniyu v tochke”, Differents. uravneniya, 22:5 (1985), 109–119 | MR

[2] Prilepko A. I., Ivankov A. L., “Obratnye zadachi opredeleniya koeffitsienta, indikatrisy rasseyaniya i pravoi chasti nestatsionarnogo mnogoskorostnogo uravneniya perenosa”, Differents. uravneniya, 22:1 (1985), 870–885 | MR

[3] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000

[4] Anikonov D. S., Nazarov V. G., Prokhorov I. V., “Integrodifferentsialnyi indikator dlya zadachi odnorakursnoi tomografii”, Sib. zhurn. industr. matematiki, 17:2 (2014), 3–10 | Zbl

[5] Balakina E. Yu., “Neklassicheskaya kraevaya zadacha dlya uravneniya perenosa”, Differents. uravneniya, 45:9 (2009), 1219–1228 | MR | Zbl

[6] Anikonov D. S., Balakina E. Yu., “Polikhromaticheskii indikator neodnorodnosti neizvestnoi sredy dlya zadachi rentgenovskoi tomografii”, Sib. mat. zhurnal, 53:4 (2012), 721–740 | MR | Zbl

[7] Germogenova T. A., Lokalnye svoistva resheniya uravneniya perenosa, Nauka, M., 1986 | MR