Mots-clés : transport equation
@article{SJIM_2015_18_4_a0,
author = {E. Yu. Balakina},
title = {Existence and uniqueness of a~soluton to the nonstationary transport equation},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {3--8},
year = {2015},
volume = {18},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_4_a0/}
}
E. Yu. Balakina. Existence and uniqueness of a soluton to the nonstationary transport equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 4, pp. 3-8. http://geodesic.mathdoc.fr/item/SJIM_2015_18_4_a0/
[1] Prilepko A. I., Ivankov A. L., “Obratnye zadachi opredeleniya koeffitsienta i pravoi chasti nestatsionarnogo mnogoskorostnogo uravneniya perenosa po pereopredeleniyu v tochke”, Differents. uravneniya, 22:5 (1985), 109–119 | MR
[2] Prilepko A. I., Ivankov A. L., “Obratnye zadachi opredeleniya koeffitsienta, indikatrisy rasseyaniya i pravoi chasti nestatsionarnogo mnogoskorostnogo uravneniya perenosa”, Differents. uravneniya, 22:1 (1985), 870–885 | MR
[3] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000
[4] Anikonov D. S., Nazarov V. G., Prokhorov I. V., “Integrodifferentsialnyi indikator dlya zadachi odnorakursnoi tomografii”, Sib. zhurn. industr. matematiki, 17:2 (2014), 3–10 | Zbl
[5] Balakina E. Yu., “Neklassicheskaya kraevaya zadacha dlya uravneniya perenosa”, Differents. uravneniya, 45:9 (2009), 1219–1228 | MR | Zbl
[6] Anikonov D. S., Balakina E. Yu., “Polikhromaticheskii indikator neodnorodnosti neizvestnoi sredy dlya zadachi rentgenovskoi tomografii”, Sib. mat. zhurnal, 53:4 (2012), 721–740 | MR | Zbl
[7] Germogenova T. A., Lokalnye svoistva resheniya uravneniya perenosa, Nauka, M., 1986 | MR