Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2015_18_3_a6, author = {A. P. Polyakova and I. E. Svetov}, title = {Numerical solution of reconstruction problem of a~potential vector field in a~ball from its normal {Radon} transform}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {63--75}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_3_a6/} }
TY - JOUR AU - A. P. Polyakova AU - I. E. Svetov TI - Numerical solution of reconstruction problem of a~potential vector field in a~ball from its normal Radon transform JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2015 SP - 63 EP - 75 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2015_18_3_a6/ LA - ru ID - SJIM_2015_18_3_a6 ER -
%0 Journal Article %A A. P. Polyakova %A I. E. Svetov %T Numerical solution of reconstruction problem of a~potential vector field in a~ball from its normal Radon transform %J Sibirskij žurnal industrialʹnoj matematiki %D 2015 %P 63-75 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2015_18_3_a6/ %G ru %F SJIM_2015_18_3_a6
A. P. Polyakova; I. E. Svetov. Numerical solution of reconstruction problem of a~potential vector field in a~ball from its normal Radon transform. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 3, pp. 63-75. http://geodesic.mathdoc.fr/item/SJIM_2015_18_3_a6/
[1] Sharafutdinov V. A., Integralnaya geometriya tenzornykh polei, Nauka, Novosibirsk, 1993 | MR
[2] Munk W., Wunsh C., “Ocean acoustic tomography: a scheme for large-scale monitoring”, Deep-Sea Res. A, 26:2 (1979), 123–161 | DOI
[3] Juhlin P., “Doppler tomography”, Engineering in Medicine and Biology Soc., Proc. 15 Annual Internat. Conf. IEEE, 1993, 212–213
[4] Sparr G., Strahlen K., Lindstorm K., Persson H. W., “Doppler tomography for vector fields”, Inverse Problems, 11 (1995), 1051–1061 | DOI | MR | Zbl
[5] Pikalov V. V., Preobrazhenskii N. G., Rekonstruktivnaya tomografiya v gazodinamike i fizike plazmy, Nauka, Novosibirsk, 1987
[6] Schuster T., “20 years of imaging in vector field tomography: a review”, Math. Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), Ser. Publications of the Scuola Normale Superiore, 7, 2008, 389–424 | MR
[7] Derevtsov E. Yu., Kashina I. G., “Chislennoe reshenie zadachi vektornoi tomografii s pomoschyu polinomialnykh bazisov”, Sib. zhurn. vychisl. matematiki, 5:3 (2002), 233–254 | Zbl
[8] Svetov I. E., Polyakova A. P., “Sravnenie dvukh algoritmov chislennogo resheniya zadachi dvumernoi vektornoi tomografii”, Sib. elektron. mat. izvestiya, 10 (2013), 90–108 URL: http://semr.math.nsc.ru/v10/p90-108.pdf | MR
[9] Svetov I. E., Derevtsov E. Yu., Volkov Yu. S., Schuster T., “A numerical solver based on Bsplines for 2D vector field tomography in a refractingmedium”, Math. Comput. Simulation, 97 (2014), 207–223 | DOI | MR
[10] Svetov I. E., “Vosstanovlenie solenoidalnoi chasti trekhmernogo vektornogo polya po luchevym preobrazovaniyam, vychislennym vdol pryamykh, parallelnykh koordinatnym ploskostyam”, Sib. zhurn. vychisl. matematiki, 15:3 (2012), 329–344 | Zbl
[11] Sharafutdinov V., “Slice-by-slice reconstruction algorithm for vector tomography with incomplete data”, Inverse Problems, 23 (2007), 2603–2627 | DOI | MR | Zbl
[12] Polyakova A. P., “Vosstanovlenie vektornogo polya v share po ego normalnomu preobrazovaniyu Radona”, Vestn. Novosib. gos. un–ta. Ser. Matematika, mekhanika, informatika, 13:4 (2013), 119–142
[13] Defrise M., Gullberg G. T., 3D reconstruction of tensors and vectors, Technical Report N LBNL-54936, LBNL, Berkeley, 2005
[14] Louis A. K., “Orthogonal function series expansions and the null space of the Radon transform”, Society for Industrial and Applied Mathematics, 15:3 (1984), 621–633 | MR | Zbl
[15] Maass P., “The X-ray transform: Singular value decomposition and resolution”, Inverse Problems, 3:4 (1987), 729–741 | DOI | MR | Zbl
[16] Derevtsov E. Yu., Efimov A. V., Louis A. K., Schuster T., “Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography”, J. Inverse Ill-Posed Problems, 19:4–5 (2011), 689–715 | MR | Zbl
[17] Polyakova A. P., Derevtsov E. Yu., “Reshenie zadachi integralnoi geometrii 2-tenzornykh polei metodom singulyarnogo razlozheniya”, Vestn. Novosib. gos. un-ta. Ser. Matematika, mekhanika, informatika, 12:3 (2012), 73–94 | Zbl
[18] Weyl H., “The method of orthogonal projection in potential theory”, Duke Math. J., 7 (1940), 411–444 | DOI | MR | Zbl