Numerical solution of reconstruction problem of a~potential vector field in a~ball from its normal Radon transform
Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 3, pp. 63-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a numerical solution of reconstruction problem of a potential vector field in a ball from the known values of the normal Radon transform. The algorithm is based on the method of truncated singular value decomposition. Numerical simulations confirm that the proposed method yields good results of reconstruction of potential vector fields.
Keywords: vector tomography, potential vector field, approximation, truncated singular value decomposition
Mots-clés : normal Radon transform, orthogonal polynomials.
@article{SJIM_2015_18_3_a6,
     author = {A. P. Polyakova and I. E. Svetov},
     title = {Numerical solution of reconstruction problem of a~potential vector field in a~ball from its normal {Radon} transform},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {63--75},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_3_a6/}
}
TY  - JOUR
AU  - A. P. Polyakova
AU  - I. E. Svetov
TI  - Numerical solution of reconstruction problem of a~potential vector field in a~ball from its normal Radon transform
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2015
SP  - 63
EP  - 75
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2015_18_3_a6/
LA  - ru
ID  - SJIM_2015_18_3_a6
ER  - 
%0 Journal Article
%A A. P. Polyakova
%A I. E. Svetov
%T Numerical solution of reconstruction problem of a~potential vector field in a~ball from its normal Radon transform
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2015
%P 63-75
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2015_18_3_a6/
%G ru
%F SJIM_2015_18_3_a6
A. P. Polyakova; I. E. Svetov. Numerical solution of reconstruction problem of a~potential vector field in a~ball from its normal Radon transform. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 3, pp. 63-75. http://geodesic.mathdoc.fr/item/SJIM_2015_18_3_a6/

[1] Sharafutdinov V. A., Integralnaya geometriya tenzornykh polei, Nauka, Novosibirsk, 1993 | MR

[2] Munk W., Wunsh C., “Ocean acoustic tomography: a scheme for large-scale monitoring”, Deep-Sea Res. A, 26:2 (1979), 123–161 | DOI

[3] Juhlin P., “Doppler tomography”, Engineering in Medicine and Biology Soc., Proc. 15 Annual Internat. Conf. IEEE, 1993, 212–213

[4] Sparr G., Strahlen K., Lindstorm K., Persson H. W., “Doppler tomography for vector fields”, Inverse Problems, 11 (1995), 1051–1061 | DOI | MR | Zbl

[5] Pikalov V. V., Preobrazhenskii N. G., Rekonstruktivnaya tomografiya v gazodinamike i fizike plazmy, Nauka, Novosibirsk, 1987

[6] Schuster T., “20 years of imaging in vector field tomography: a review”, Math. Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), Ser. Publications of the Scuola Normale Superiore, 7, 2008, 389–424 | MR

[7] Derevtsov E. Yu., Kashina I. G., “Chislennoe reshenie zadachi vektornoi tomografii s pomoschyu polinomialnykh bazisov”, Sib. zhurn. vychisl. matematiki, 5:3 (2002), 233–254 | Zbl

[8] Svetov I. E., Polyakova A. P., “Sravnenie dvukh algoritmov chislennogo resheniya zadachi dvumernoi vektornoi tomografii”, Sib. elektron. mat. izvestiya, 10 (2013), 90–108 URL: http://semr.math.nsc.ru/v10/p90-108.pdf | MR

[9] Svetov I. E., Derevtsov E. Yu., Volkov Yu. S., Schuster T., “A numerical solver based on Bsplines for 2D vector field tomography in a refractingmedium”, Math. Comput. Simulation, 97 (2014), 207–223 | DOI | MR

[10] Svetov I. E., “Vosstanovlenie solenoidalnoi chasti trekhmernogo vektornogo polya po luchevym preobrazovaniyam, vychislennym vdol pryamykh, parallelnykh koordinatnym ploskostyam”, Sib. zhurn. vychisl. matematiki, 15:3 (2012), 329–344 | Zbl

[11] Sharafutdinov V., “Slice-by-slice reconstruction algorithm for vector tomography with incomplete data”, Inverse Problems, 23 (2007), 2603–2627 | DOI | MR | Zbl

[12] Polyakova A. P., “Vosstanovlenie vektornogo polya v share po ego normalnomu preobrazovaniyu Radona”, Vestn. Novosib. gos. un–ta. Ser. Matematika, mekhanika, informatika, 13:4 (2013), 119–142

[13] Defrise M., Gullberg G. T., 3D reconstruction of tensors and vectors, Technical Report N LBNL-54936, LBNL, Berkeley, 2005

[14] Louis A. K., “Orthogonal function series expansions and the null space of the Radon transform”, Society for Industrial and Applied Mathematics, 15:3 (1984), 621–633 | MR | Zbl

[15] Maass P., “The X-ray transform: Singular value decomposition and resolution”, Inverse Problems, 3:4 (1987), 729–741 | DOI | MR | Zbl

[16] Derevtsov E. Yu., Efimov A. V., Louis A. K., Schuster T., “Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography”, J. Inverse Ill-Posed Problems, 19:4–5 (2011), 689–715 | MR | Zbl

[17] Polyakova A. P., Derevtsov E. Yu., “Reshenie zadachi integralnoi geometrii 2-tenzornykh polei metodom singulyarnogo razlozheniya”, Vestn. Novosib. gos. un-ta. Ser. Matematika, mekhanika, informatika, 12:3 (2012), 73–94 | Zbl

[18] Weyl H., “The method of orthogonal projection in potential theory”, Duke Math. J., 7 (1940), 411–444 | DOI | MR | Zbl