Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2015_18_3_a4, author = {A. B. Levina and S. V. Taranov}, title = {Construction of linear and robust codes based on wavelet decomposition}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {49--56}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_3_a4/} }
TY - JOUR AU - A. B. Levina AU - S. V. Taranov TI - Construction of linear and robust codes based on wavelet decomposition JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2015 SP - 49 EP - 56 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2015_18_3_a4/ LA - ru ID - SJIM_2015_18_3_a4 ER -
A. B. Levina; S. V. Taranov. Construction of linear and robust codes based on wavelet decomposition. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 3, pp. 49-56. http://geodesic.mathdoc.fr/item/SJIM_2015_18_3_a4/
[1] Yakovlev A. N., Vvedenie v veivlet-preobrazovaniya, Izd-vo NGTU, Novosibirsk, 2003
[2] Dobeshi I., Desyat lektsii po veivletam, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2001
[3] Chui Ch., Vvedenie v veivlety, Mir, M., 2001
[4] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Teoriya vspleskov, Fizmatlit, M., 2006 | MR
[5] Vorobev V. I., Gribunin V. G., Teoriya i praktika veivlet-preobrazovaniya, Izd-vo VUS, SPb., 1999
[6] Demyanovich Yu. K., Khodakovskii V. A., Vvedenie v teoriyu veivletov, Kurs lektsii, Izd-vo PGUPS, SPb., 2007
[7] Demyanovich Yu. K., Kosogorov O. M., “Algoritmy parallelnogo veivletno-splainovogo adaptivnogo szhatiya”, Vysokoproizvoditelnye parallelnye vychisleniya na klasternykh sistemakh, Materialy 6 Mezhdunar. nauchno-prakt. seminara, v. 1, Izd-vo SPbGU, SPb., 2007, 169–175
[8] Demyanovich Yu. K., Kosogorov O. M., “O parallelnomveivletno-splainovom adaptivnom szhatii”, Protsessy upravleniya i ustoichivost, Trudy 38 Mezhdunar. nauch. konf. aspirantov i studentov, Izd-vo SPbGU, SPb., 2007, 152–155
[9] Demyanovich Yu. K., Levina A. B., “O veivletnykh razlozheniyakh lineinykh prostranstv nad proizvolnym polem i o nekotorykh prilozheniyakh”, Mat. modelirovanie, 20:11 (2008), 104–108 | MR | Zbl
[10] Levina A. B., “Ispolzovanie splainov pervogo poryadka v shifrovanii”, Vestnik Sankt-Peterburgskogo un-ta, 2009, no. 3, 82–94 | MR
[11] Levina A. B., Splain-veivlety i ikh nekotorye primeneniya, LAP LAMBERT Acad. Publ., Saarbrucken, 2011
[12] Karpovsky M. G., Taubin A., “A new class of nonlinear systematic error detecting codes”, IEEE Trans. Inform. Theory, 50:8 (2004), 1818–1820 | DOI | MR | Zbl
[13] Kulikowski K. J., Karpovsky M. G., Taubin A., “Fault attack resistant cryptographic hardware with uniform error detection”, Fault Diagnosis and Tolerance in Cryptography, Lecture Notes in Computer Science, 4236, 2006, 185–195 | DOI | MR
[14] Kulikowski K. J., Karpovsky M. G., Taubin A., “Robust codes and robust, fault tolerant architectures of the advanced encryption standard”, J. System Architecture, 53 (2007), 138–149 | DOI
[15] Wang Z., Karpovsky M. G., Kulikowski K. J., “Design of memories with concurrent error detection and Correction by non-linear SEC-DED codes”, J. Electronic Testing, 5:5 (2010), 559–580 | DOI
[16] Wang Z., Karpovsky M. G., “Algebraic manipulation detection codes and their application for design of secure cryptographic devices”, Proc. Internat. Symposium on On-Line Testing, 2011, 234–239