Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2015_18_3_a2, author = {A. A. Zhalnina and N. A. Kucher}, title = {On well-posedness of inhomogeneous boundary value problem for equations of mixtures of compressible viscous fluids}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {26--39}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_3_a2/} }
TY - JOUR AU - A. A. Zhalnina AU - N. A. Kucher TI - On well-posedness of inhomogeneous boundary value problem for equations of mixtures of compressible viscous fluids JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2015 SP - 26 EP - 39 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2015_18_3_a2/ LA - ru ID - SJIM_2015_18_3_a2 ER -
%0 Journal Article %A A. A. Zhalnina %A N. A. Kucher %T On well-posedness of inhomogeneous boundary value problem for equations of mixtures of compressible viscous fluids %J Sibirskij žurnal industrialʹnoj matematiki %D 2015 %P 26-39 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2015_18_3_a2/ %G ru %F SJIM_2015_18_3_a2
A. A. Zhalnina; N. A. Kucher. On well-posedness of inhomogeneous boundary value problem for equations of mixtures of compressible viscous fluids. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 3, pp. 26-39. http://geodesic.mathdoc.fr/item/SJIM_2015_18_3_a2/
[1] Novo S., “Compressible Navier-Stokes model with inflow-outflow boundary conditions”, J. Math. Fluid Mech., 7 (2005), 485–514 | DOI | MR | Zbl
[2] Girinon V., “Navier–Stokes equations with nonhomogeneous boundary conditions in a bounded three-dimensional domain”, J. Math. Fluid Mech., 13 (2011), 309–339 | DOI | MR | Zbl
[3] Farwig R., “Stationary solutions of compressible Navier–Stokes equations with slip boundary condition”, Comm. Partial Differential Equations, 14 (1989), 1579–1606 | DOI | MR | Zbl
[4] Kweon J. R., Kellogg R. B., “Compressible Navier–Stokes equations in a bounded domain with inflow boundary condition”, SIAM J. Math. Anal., 28 (1997), 94–108 | DOI | MR | Zbl
[5] Kweon J. R., Kellogg R. B., “Regularity of solutions to the Navier–Stokes equations for compressible barotropic flows on a polygon”, Arch. Rational Mech. Anal., 163 (2000), 35–64 | DOI | MR
[6] Plotnikov P. I., Sokolovski Zh., “Statsionarnye kraevye zadachi dlya uravnenii Nave–Stoksa s pokazatelem adiabaty $\gamma3/2$”, Dokl. RAN, 397:2 (2004), 166–169 | MR
[7] Plotnikov P. I., Sokolowski J., “On compactness, domain dependence and existence of steady state solutions to compressible isothermal Navier–Stokes equations”, J. Math. Fluid Mech., 7 (2005), 529–573 | DOI | MR | Zbl
[8] Plotnikov P. I., Sokolowski J., “Domain dependence of solutions to compressible Navier–Stokes equations”, SIAM J. Control Optim., 45 (2006), 1165–1197 | DOI | MR | Zbl
[9] Plotnikov P., Sokolowski J., Compressible Navier-Stokes Equations: Theory and Shape Optimization, Springer, Basel, 2012 | MR | Zbl
[10] Rajagopal K. R., Tao L., Mechanics of Mixtures, World Sci., Singapore, 1995 | MR | Zbl
[11] Kraiko A. N., Nigmatulin R. I., “Mekhanika mnogofaznykh sred”, Itogi nauki i tekhniki. Ser. Gidromekhanika, 6, 1972, 93–174
[12] Nigmatulin R. I., Dinamika mnogofaznykh sred, Ch. 1, Nauka, M., 1987
[13] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR
[14] Galdi G., An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Steady-State Problems, Springer Monographs in Mathematics, Springer Sci., N.Y., 2011 | DOI | MR | Zbl