Analysis of solutions to mathematical models of epidemic processes with common structural properties
Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 2, pp. 85-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present the equations of a family of mathematical models describing the process of the spread of infectious diseases among the population of one or more regions. The variables of the models are the numbers of various groups of individuals involved in the spread of the epidemic (groups of susceptible, infected, diseased individuals, etc.). The change rates in the number of groups of individuals are defined using abstract functions that take into account the current state and the history of the spread of the epidemic process. For analyzing the solutions of the models, we use the results of the theory of monotone operators and the properties of $M$-matrices. Sufficient conditions for the existence of bounded solutions of a family of models and the limit of these solutions at infinity are obtained. The results of the study of the solutions of the models of the spread of HIV-infection and tuberculosis are formulated.
Keywords: mathematical model, delay integrodifferential equations, asymptotic behavior of solutions, theory of monotone operators, epidemiology, tuberculosis.
Mots-clés : $M$-matrix, HIV-infection
@article{SJIM_2015_18_2_a8,
     author = {N. V. Pertsev},
     title = {Analysis of solutions to mathematical models of epidemic processes with common structural properties},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {85--98},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a8/}
}
TY  - JOUR
AU  - N. V. Pertsev
TI  - Analysis of solutions to mathematical models of epidemic processes with common structural properties
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2015
SP  - 85
EP  - 98
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a8/
LA  - ru
ID  - SJIM_2015_18_2_a8
ER  - 
%0 Journal Article
%A N. V. Pertsev
%T Analysis of solutions to mathematical models of epidemic processes with common structural properties
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2015
%P 85-98
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a8/
%G ru
%F SJIM_2015_18_2_a8
N. V. Pertsev. Analysis of solutions to mathematical models of epidemic processes with common structural properties. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 2, pp. 85-98. http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a8/

[1] Anderson R., Mei R., Infektsionnye bolezni cheloveka. Dinamika i kontrol, Mir, M., 2004

[2] Hethcote H., “The mathematics of infectious diseases”, SIAM Rev., 42:4 (2000), 599–653 | DOI | MR | Zbl

[3] Avilov K. K., Romanyukha A. A., “Matematicheskie modeli rasprostraneniya i kontrolya tuberkulëza (obzor)”, Mat. biologiya i bioinformatika, 2:2 (2007), 188–318 | DOI

[4] Nosova E. A., “Modeli kontrolya i rasprostraneniya VICh-infektsii”, Mat. biologiya i bioinformatika, 7:2 (2012), 632–675 | DOI

[5] Kolmanovskii V. B., Nosov V. R., Ustoichivost i periodicheskie rezhimy reguliruemykh sistem s posledeistviem, Nauka, M., 1981 | MR

[6] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR

[7] Bocharov G., Hadeler K., “Structured population models, conservation laws and delay equations”, J. Differential Equations, 168 (2000), 212–237 | DOI | MR | Zbl

[8] Bocharov G., Rihan F., “Numerical modelling in biosciences using delay differential equations”, J. Comput. Appl. Math., 125 (2000), 183–199 | DOI | MR | Zbl

[9] Luzyanina T., Roosea D., Bocharov G., “Numerical bifurcation analysis of immunological models with time delays”, J. Comput. Appl. Math., 184 (2005), 165–176 | DOI | MR | Zbl

[10] Baker C., Bocharov G., Parmuzin E., Rihan F., “Some aspects of causal and neutral equations used in modeling”, J. Comput. Appl. Math., 229 (2009), 335–349 | DOI | MR | Zbl

[11] Beretta E., Hara T., Ma W., Takeuchi Y., “Global asymptotic stability of an SIR epidemic model with distributed time delay”, Nonlinear Anal., 47 (2001), 4107–4115 | DOI | MR | Zbl

[12] Jin Z., Zhien M., Maoam H., “Global stability of an SIRS epidemic model with delays”, Acta Mathematica Scientia Ser. B, 26:2 (2006), 291–306 | DOI | MR | Zbl

[13] O'Regan S., Kelly T., Korobeinikov A., O'Callaghan M., Pokrovskii A., “Lyapunov functions for SIR and SIRS epidemic models”, Appl. Math. Lett., 23 (2010), 446–448 | DOI | MR | Zbl

[14] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[15] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR

[16] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975 | MR

[17] Berman A., Plemmons R. J., Nonnegative Matrices in the Mathematical Sciences, Acad. Press, N.Y., 1979 | MR | Zbl

[18] Pertsev N. V., “Ob ustoichivosti nulevogo resheniya odnoi sistemy integrodifferentsialnykh uravnenii, voznikayuschei v modelyakh dinamiki populyatsii”, Izv. vuzov. Matematika, 1999, no. 8(447), 47–53 | MR | Zbl

[19] Pertsev N. V., “Primenenie monotonnogo metoda i $M$-matrits k analizu povedeniya reshenii nekotorykh modelei biologicheskikh protsessov”, Sib. zhurn. industr. matematiki, 5:4(12) (2002), 110–122 | MR | Zbl

[20] Karelina R. O., Pertsev N. V., “Postroenie dvustoronnikh otsenok dlya reshenii nekotorykh sistem differentsialnykh uravnenii s posledeistviem”, Sib. zhurn. industr. matematiki, 8:4(24) (2005), 60–72 | MR | Zbl

[21] Pertsev N. V., Pichugin B. Yu., Pichugina A. N., “Issledovanie asimptoticheskogo povedeniya reshenii nekotorykh modelei epidemicheskikh protsessov”, Mat. biologiya i bioinformatika, 8:1 (2013), 21–48 | DOI

[22] Pertsev N. V., “Nepreryvno-diskretnaya model rasprostraneniya i kontrolya tuberkuleza”, Sib. zhurn. industr. matematiki, 17:3(59) (2014), 86–97

[23] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR