Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2015_18_2_a5, author = {A. A. Klyachin}, title = {On the uniform convergence of piecewise linear solutions to the equilibrium capillary surface equation}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {52--62}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a5/} }
TY - JOUR AU - A. A. Klyachin TI - On the uniform convergence of piecewise linear solutions to the equilibrium capillary surface equation JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2015 SP - 52 EP - 62 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a5/ LA - ru ID - SJIM_2015_18_2_a5 ER -
%0 Journal Article %A A. A. Klyachin %T On the uniform convergence of piecewise linear solutions to the equilibrium capillary surface equation %J Sibirskij žurnal industrialʹnoj matematiki %D 2015 %P 52-62 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a5/ %G ru %F SJIM_2015_18_2_a5
A. A. Klyachin. On the uniform convergence of piecewise linear solutions to the equilibrium capillary surface equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 2, pp. 52-62. http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a5/
[1] Finn R., Ravnovesnye kapillyarnye poverkhnosti. Matematicheskaya teoriya, Mir, M., 1989 | MR
[2] Emmer M., “Esistenza, unicita e regolarita nelle superfici di equilibria nei capillari”, Ann. Univ. Ferrara Sez., 7:8 (1973), 79–94 | MR
[3] Uraltseva N. N., “Reshenie zadachi kapillyarnosti”, Vestn. LGU. Matematika. Mekhanika. Astronomiya, 1973, no. 4(19), 54–64 | Zbl
[4] Gerhardt C., “Existence and regularity of capillary surfaces”, Boll. Un. Mat. Ital., 10:2 (1974), 79–94 | MR
[5] Gerhardt C., “On the capillarity problem with constant volume”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. Ser. IV, 2:2 (1975), 303–320 | MR | Zbl
[6] Gerhardt C., “Global regularity of solutions to the capillarity problem”, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. Ser. IV, 3:1 (1976), 157–175 | MR | Zbl
[7] Finn R., Gerhardt C., “The internal sphere condition and the capillary problem”, Ann. Math. Pure Appl., 112:4 (1977), 13–31 | DOI | MR | Zbl
[8] Spruck J., “On the existence of a capillary surface with a prescribed angle of contact”, Comm. Pure Appl. Math., 28:2 (1975), 189–200 | DOI | MR | Zbl
[9] Simon L., Spruck J., “Existence and regularity of a capillary surface with prescribed contact angle”, Arch. Rational Mech. Anal., 61:1 (1976), 19–34 | DOI | MR | Zbl
[10] Giusti E., “Boundary value problems for non–parametric surfaces of prescribed mean curvature”, Ann. Scoula Norm. Sup. Pisa. Cl. Sci. Ser. IV, 3:3 (1976), 501–548 | MR | Zbl
[11] Giusti E., “On the equation of surfaces of prescribedmean curvature: existence and uniqueness without boundary conditions”, Invent. Math., 46:2 (1976), 111–137 | DOI | MR
[12] Giusti E., “Generalized solutions to the mean curvature equation”, Pacific J. Math., 88:2 (1980), 297–322 | DOI | MR
[13] Lieberman G. M., “Solvability of quasilinear elliptic equation with non- linear boundary conditions”, Trans. Amer. Math. Soc., 273:2 (1982), 753–765 | DOI | MR | Zbl
[14] Lieberman G. M., Trudinger N. S., “Nonlinear oblique boundary value problems for nonlinear elliptic equations”, Trans. Amer. Math. Soc., 295:2 (1986), 509–546 | DOI | MR | Zbl
[15] Gilbarg D., Trudinger M., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR
[16] Gatsunaev M. A., Klyachin A. A., “O ravnomernoi skhodimosti kusochno-lineinykh reshenii uravneniya minimalnoi poverkhnosti”, Ufimskii mat. zhurn., 6:3 (2014), 3–16
[17] Miklyukov V. M., “Ob odnom novom podkhode k teoreme Bernshteina i blizkim voprosam uravnenii tipa minimalnoi poverkhnosti”, Mat. sb., 108(150):2 (1979), 268–289 | MR | Zbl
[18] Hwang J.-F., “A uniqueness theorem for the minimal surface equation”, Pacific J. Math., 176:2 (1996), 357–364 | DOI | MR | Zbl
[19] Hwang J.-F., “How many theorems can be derived from a vector function – on uniqueness theorems for the minimal surface equation”, Taiwanese J. Math., 4:7 (2003), 513–539 | MR | Zbl
[20] Klyachin V. A., Pabat E. A., “$C^1$-approksimatsiya poverkhnostei urovnya funktsii, zadannykh na neregulyarnykh setkakh”, Sib. zhurn. industr. matematiki, 13:2(42) (2010), 69–78 | MR | Zbl