On the uniform convergence of piecewise linear solutions to the equilibrium capillary surface equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 2, pp. 52-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider piecewise linear solutions to the equilibrium capillary surface equations over a given triangulation of a multifaceted domain. It is shown that, under certain conditions, the gradients of these functions are bounded in refining the triangulation, i.e., when the maximum diameter of the triangles of the triangulation vanishes. This property holds if piecewise linear functions approximate the energy integral for a smooth function with required accuracy. As a consequence of the obtained properties, we get the uniform convergence of piecewise linear solutions to the exact solution of the equation of an equilibrium capillary surface with prescribed contact angle on the boundary.
Keywords: piecewise linear functions, minimal surface equation, approximation of the energy functional.
@article{SJIM_2015_18_2_a5,
     author = {A. A. Klyachin},
     title = {On the uniform convergence of piecewise linear solutions to the equilibrium capillary surface equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {52--62},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a5/}
}
TY  - JOUR
AU  - A. A. Klyachin
TI  - On the uniform convergence of piecewise linear solutions to the equilibrium capillary surface equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2015
SP  - 52
EP  - 62
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a5/
LA  - ru
ID  - SJIM_2015_18_2_a5
ER  - 
%0 Journal Article
%A A. A. Klyachin
%T On the uniform convergence of piecewise linear solutions to the equilibrium capillary surface equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2015
%P 52-62
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a5/
%G ru
%F SJIM_2015_18_2_a5
A. A. Klyachin. On the uniform convergence of piecewise linear solutions to the equilibrium capillary surface equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 2, pp. 52-62. http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a5/

[1] Finn R., Ravnovesnye kapillyarnye poverkhnosti. Matematicheskaya teoriya, Mir, M., 1989 | MR

[2] Emmer M., “Esistenza, unicita e regolarita nelle superfici di equilibria nei capillari”, Ann. Univ. Ferrara Sez., 7:8 (1973), 79–94 | MR

[3] Uraltseva N. N., “Reshenie zadachi kapillyarnosti”, Vestn. LGU. Matematika. Mekhanika. Astronomiya, 1973, no. 4(19), 54–64 | Zbl

[4] Gerhardt C., “Existence and regularity of capillary surfaces”, Boll. Un. Mat. Ital., 10:2 (1974), 79–94 | MR

[5] Gerhardt C., “On the capillarity problem with constant volume”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. Ser. IV, 2:2 (1975), 303–320 | MR | Zbl

[6] Gerhardt C., “Global regularity of solutions to the capillarity problem”, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. Ser. IV, 3:1 (1976), 157–175 | MR | Zbl

[7] Finn R., Gerhardt C., “The internal sphere condition and the capillary problem”, Ann. Math. Pure Appl., 112:4 (1977), 13–31 | DOI | MR | Zbl

[8] Spruck J., “On the existence of a capillary surface with a prescribed angle of contact”, Comm. Pure Appl. Math., 28:2 (1975), 189–200 | DOI | MR | Zbl

[9] Simon L., Spruck J., “Existence and regularity of a capillary surface with prescribed contact angle”, Arch. Rational Mech. Anal., 61:1 (1976), 19–34 | DOI | MR | Zbl

[10] Giusti E., “Boundary value problems for non–parametric surfaces of prescribed mean curvature”, Ann. Scoula Norm. Sup. Pisa. Cl. Sci. Ser. IV, 3:3 (1976), 501–548 | MR | Zbl

[11] Giusti E., “On the equation of surfaces of prescribedmean curvature: existence and uniqueness without boundary conditions”, Invent. Math., 46:2 (1976), 111–137 | DOI | MR

[12] Giusti E., “Generalized solutions to the mean curvature equation”, Pacific J. Math., 88:2 (1980), 297–322 | DOI | MR

[13] Lieberman G. M., “Solvability of quasilinear elliptic equation with non- linear boundary conditions”, Trans. Amer. Math. Soc., 273:2 (1982), 753–765 | DOI | MR | Zbl

[14] Lieberman G. M., Trudinger N. S., “Nonlinear oblique boundary value problems for nonlinear elliptic equations”, Trans. Amer. Math. Soc., 295:2 (1986), 509–546 | DOI | MR | Zbl

[15] Gilbarg D., Trudinger M., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR

[16] Gatsunaev M. A., Klyachin A. A., “O ravnomernoi skhodimosti kusochno-lineinykh reshenii uravneniya minimalnoi poverkhnosti”, Ufimskii mat. zhurn., 6:3 (2014), 3–16

[17] Miklyukov V. M., “Ob odnom novom podkhode k teoreme Bernshteina i blizkim voprosam uravnenii tipa minimalnoi poverkhnosti”, Mat. sb., 108(150):2 (1979), 268–289 | MR | Zbl

[18] Hwang J.-F., “A uniqueness theorem for the minimal surface equation”, Pacific J. Math., 176:2 (1996), 357–364 | DOI | MR | Zbl

[19] Hwang J.-F., “How many theorems can be derived from a vector function – on uniqueness theorems for the minimal surface equation”, Taiwanese J. Math., 4:7 (2003), 513–539 | MR | Zbl

[20] Klyachin V. A., Pabat E. A., “$C^1$-approksimatsiya poverkhnostei urovnya funktsii, zadannykh na neregulyarnykh setkakh”, Sib. zhurn. industr. matematiki, 13:2(42) (2010), 69–78 | MR | Zbl