Solvability of a~boundary value problem for stationary equations of magnetohydrodynamics of a~viscous heat-conducting fluid
Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 2, pp. 24-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a boundary value problem for the stationary equations of magnetohydrodynamics of a viscous heat-conducting fluid considered under the Dirichlet condition for the velocity and mixed boundary conditions for the electromagnetic field and the temperature. Sufficient conditions are established on the initial data that guarantee the global solvability of this problem and the local uniqueness of its solution.
Keywords: magnetohydrodynamics, boundary value problem, mixed boundary conditions, solvability, uniqueness.
@article{SJIM_2015_18_2_a2,
     author = {G. V. Alekseev},
     title = {Solvability of a~boundary value problem for stationary equations of magnetohydrodynamics of a~viscous heat-conducting fluid},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {24--35},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a2/}
}
TY  - JOUR
AU  - G. V. Alekseev
TI  - Solvability of a~boundary value problem for stationary equations of magnetohydrodynamics of a~viscous heat-conducting fluid
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2015
SP  - 24
EP  - 35
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a2/
LA  - ru
ID  - SJIM_2015_18_2_a2
ER  - 
%0 Journal Article
%A G. V. Alekseev
%T Solvability of a~boundary value problem for stationary equations of magnetohydrodynamics of a~viscous heat-conducting fluid
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2015
%P 24-35
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a2/
%G ru
%F SJIM_2015_18_2_a2
G. V. Alekseev. Solvability of a~boundary value problem for stationary equations of magnetohydrodynamics of a~viscous heat-conducting fluid. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 2, pp. 24-35. http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a2/

[1] Landau L. D., Lifshits E. M., Teoreticheskaya fizika. Elektrodinamika sploshnykh sred, Nauka, M., 1982 | MR

[2] Glukhikh V. A., Tananaev A. V., Kirillov I. R., Magnitnaya gidrodinamika v yadernoi energetike, Nauka, M., 1987

[3] Lavrentev I. V., “Zhidkometallicheskie sistemy termoyadernykh reaktorov-tokomakov”, Magnit. gidrodinamika, 1990, no. 2, 105–124

[4] Alekseev G., Brizitskii R., “Solvability of the boundary value problem for stationary magnetohydrodynamics equations under mixed boundary conditions for the magnetic field”, Appl. Math. Letters, 32 (2014), 13–18 | DOI | MR | Zbl

[5] Alekseev G. V., Brizitskii R. V., Pukhnachev V. V., “Razreshimost neodnorodnoi smeshannoi kraevoi zadachi dlya statsionarnykh uravnenii magnitnoi gidrodinamiki”, Dokl. AN, 458:5 (2014), 1–5

[6] Alekseev G. V., “Zadachi upravleniya dlya statsionarnoi modeli magnitnoi gidrodinamiki vyazkoi teploprovodnoi zhidkosti”, Uspekhi mekhaniki, 4:2 (2006), 66–116

[7] Alekseev G. V., “Razreshimost kraevoi zadachi dlya statsionarnoi modeli magnitnoi gidrodinamiki vyazkoi teploprovodnoi zhidkosti”, Sib. zhurn. industr. matematiki, 9:1 (2006), 13–27 | MR | Zbl

[8] Meir A. J., Schmidt P. G., “On electromagnetically and thermally driven liquid-metal flows”, Nonlinear Analysis, 47 (2001), 3281–3294 | DOI | MR | Zbl

[9] Consiglieri L., Necasova S., Sokolowski J., “Incompressible Maxwell-Boussinesq approximation: existence, uniqueness and shape sensitivity”, Control and Cybernetics, 38 (2009), 1193–1215 | MR | Zbl

[10] Consiglieri L., Necasova S., Sokolowski J., “New approach to the incompressible Maxwell–Boussinesq approximation: existence, uniqueness and shape sensitivity”, J. Differential Equations, 249 (2010), 3052–3080 | DOI | MR | Zbl

[11] Solonnikov V. A., “O nekotorykh statsionarnykh kraevykh zadachakh v magnitnoi gidrodinamike”, Trudy Mat. in-ta im. V. A. Steklova, 59, 1960, 174–187 | MR

[12] Gunzburger M. D., Meir A. J., Peterson J. S., “On the existence, uniqueness, and finite element approximation of solution of the equation of stationary, incompressible magnetohydrodynamics”, Math. Comp., 56 (1991), 523–563 | DOI | MR | Zbl

[13] Alekseev G. V., “Zadachi upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki”, Dokl. RAN, 395:3 (2004), 322–325 | MR | Zbl

[14] Alekseev G. V., “Razreshimost zadach upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi zhidkosti”, Sib. mat. zhurn., 45:2 (2004), 243–263 | MR | Zbl

[15] Schotzau D., “Mixed finite element methods for stationary incompressible magneto-hydrodynamics”, Numer. Math., 96 (2004), 771–800 | DOI | MR | Zbl

[16] Brizitskii R. V., Tereshko D. A., “O razreshimosti kraevykh zadach dlya statsionarnykh uravnenii magnitnoi gidrodinamiki s neodnorodnymi smeshannymi granichnymi usloviyami”, Differents. uravneniya, 43:2 (2007), 239–250 | MR | Zbl

[17] Fernandes P., Gilardi G., “Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions”, Math. Models Methods Appl. Sci., 7 (1997), 957–991 | DOI | MR | Zbl

[18] Auchmuty G., “The main inequality of vector field theory”, Math. Models Methods Appl. Sci., 14 (2004), 79–103 | DOI | MR | Zbl

[19] Auchmuty G., Alexander J. S., “Finite energy solutions of mixed 3d div-curl systems”, Quart. Appl. Math., 64 (2006), 335–357 | DOI | MR | Zbl

[20] Girault V., Raviart P. A., Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer-Verl., Berlin, 1986 | MR | Zbl

[21] Alekseev G. V., Optimizatsiya v statsionarnykh zadachakh teplomassoperenosa i magnitnoi gidrodinamiki, Nauchnyi mir, M., 2010