Method of decomposition of the computational domain in problems of high-current electronics
Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 2, pp. 124-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of decomposition of the computational domain is known from solving linear problems of mathematical physics. In this article, we propose to use this method for calculating intensive beams of charged particles in nonlinear self-consistent problems of high-current electronics. The computational domain partitions into two subdomains: the cathode-full subdomain and the principal subdomain. In the cathode-full subdomain, we construct an analytic solution from known formulas while in the principal subdomain the solution is found numerically. The central question is that of coordinating the subdomains. To this end, on the conjugation condition, by analogy with linear problems, we write down the Poisson–Steklov equation, which is approximated by a system of operator nonlinear equations. It is solved by methods of quasi-Newton type, namely, by Broyden's method. As follows from the experiments, the process converges already at the fourth iteration with precision acceptable for practice.
Keywords: self-consistent problem, Poincaré–Steklov equation, nonlinear equation.
@article{SJIM_2015_18_2_a11,
     author = {V. M. Sveshnikov},
     title = {Method of decomposition of the computational domain in problems of high-current electronics},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {124--130},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a11/}
}
TY  - JOUR
AU  - V. M. Sveshnikov
TI  - Method of decomposition of the computational domain in problems of high-current electronics
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2015
SP  - 124
EP  - 130
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a11/
LA  - ru
ID  - SJIM_2015_18_2_a11
ER  - 
%0 Journal Article
%A V. M. Sveshnikov
%T Method of decomposition of the computational domain in problems of high-current electronics
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2015
%P 124-130
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a11/
%G ru
%F SJIM_2015_18_2_a11
V. M. Sveshnikov. Method of decomposition of the computational domain in problems of high-current electronics. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 2, pp. 124-130. http://geodesic.mathdoc.fr/item/SJIM_2015_18_2_a11/

[1] Quarteroni A., Valli A., Domain Decomposition Methods for Partial Differential Equations, Clarendon Press, Oxford, 1999 | MR | Zbl

[2] Sveshnikov V., “Increased-accuracy numerical modeling of electron-optical systems with spacecharge”, Nuclear Instruments and Methods in Physics Research A, 645 (2011), 307–309 | DOI

[3] Denis Dzh., Shnabel R., Chislennye metody bezuslovnoi optimizatsii i resheniya nelineinykh uravnenii, Mir, M., 1988 | MR

[4] Ilin V. P., Chislennye metody resheniya zadach elektrofiziki, Nauka, M., 1985 | MR

[5] Golovin G. T., “Kombinirovannyi metod resheniya dvumernykh statsionarnykh samosoglasovannykh zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 27:5 (1987), 700–710

[6] Mokin Yu. I., “O dvukh modelyakh statsionarnogo dvizheniya zaryazhennykh chastits v vakuumnom diode”, Mat. sb., 106(148):2(6) (1978), 234–264 | MR

[7] Syrovoi V. A., Vvedenie v teoriyu intensivnykh puchkov zaryazhennykh chastits, Energoatomizdat, M., 2004

[8] Sveshnikov V. M., “Raschet prikatodnoi oblasti v elektronno-opticheskikh sistemakh, formiruyuschikh intensivnye puchki zaryazhennykh chastits”, Prikl. fizika, 2004, no. 1, 50–55