Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2015_18_1_a8, author = {D. B. Rokhlin and G. V. Mironenko}, title = {Calcilating optimal dividend payment, reinsurance, and investment strategies in a~diffusion model}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {110--122}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_1_a8/} }
TY - JOUR AU - D. B. Rokhlin AU - G. V. Mironenko TI - Calcilating optimal dividend payment, reinsurance, and investment strategies in a~diffusion model JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2015 SP - 110 EP - 122 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2015_18_1_a8/ LA - ru ID - SJIM_2015_18_1_a8 ER -
%0 Journal Article %A D. B. Rokhlin %A G. V. Mironenko %T Calcilating optimal dividend payment, reinsurance, and investment strategies in a~diffusion model %J Sibirskij žurnal industrialʹnoj matematiki %D 2015 %P 110-122 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2015_18_1_a8/ %G ru %F SJIM_2015_18_1_a8
D. B. Rokhlin; G. V. Mironenko. Calcilating optimal dividend payment, reinsurance, and investment strategies in a~diffusion model. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 1, pp. 110-122. http://geodesic.mathdoc.fr/item/SJIM_2015_18_1_a8/
[1] De Finetti B., “Sur un'impostazione alternativa della teoria collettiva del rischio”, Trans. 15 Internat. Congress of Actuaries, v. 2, 1957, 433–443
[2] Avanzi B., “Strategies for dividend distribution: a review”, North American Actuarial J., 13:2 (2009), 217–251 | DOI | MR
[3] Taksar M. I., “Optimal risk and dividend distribution control models for an insurance company”, Math. Meth. Operations Research, 51:1 (2000), 1–42 | DOI | MR | Zbl
[4] Albrecher H., Thonhauser S., “Optimality results for dividend problems in insurance”, RACSAM – Revista de la Real Academia de Ciencias Exactas. Fisicas y Naturales. Ser. A. Matematicas, 103:2 (2009), 295–320 | DOI | MR | Zbl
[5] Zhanblan-Pike M., Shiryaev A. N., “Optimizatsiya potoka dividendov”, Uspekhi mat. nauk, 50:2 (1995), 25–46 | MR | Zbl
[6] Radner R., Shepp L., “Risk vs. profit potential: a model for corporate strategy”, J. Economic Dynam. Control, 20:8 (1996), 1373–1393 | DOI | Zbl
[7] Asmussen S., Taksar M., “Controlled diffusion models for optimal dividend pay-out”, Insurance: Mathematics and Economics, 20:1 (1997), 1–15 | DOI | MR | Zbl
[8] Shreve S. E., Lehoczky J. P., Gaver D. P., “Optimal consumption for general diffusions with absorbing and reflecting barriers”, SIAM J. Control Optim., 22:1 (1984), 55–75 | DOI | MR | Zbl
[9] Meng H., Siu T. K., “On optimal reinsurance, dividend and reinvestment strategies”, Econom. Modelling, 28:1 (2011), 211–218 | DOI
[10] Pelsser A. A. J., Laeven R. J. A., “Optimal dividends and ALM under unhedgeable risk”, Insurance: Mathematics and Economics, 53:3 (2013), 515–523 | DOI | MR | Zbl
[11] Hojgaard B., Taksar M., “Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution policy”, Quantitative Finance, 4:3 (2004), 315–327 | DOI | MR
[12] Hojgaard B., Taksar M., “Controlling risk exposure and dividends payout schemes: insurance company example”, Math. Finance, 9:2 (1999), 153–182 | DOI | MR | Zbl
[13] Asmussen S., Hojgaard B., Taksar M., “Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation”, Finance and Stochastics, 4:3 (2000), 299–324 | DOI | MR | Zbl
[14] Cadenillas A., Choulli T., Taksar M., Zhang L., “Classical and impulse stochastic control for the optimization of the dividend and risk policies of an insurance firm”, Math. Finance, 16:1 (2006), 181–202 | DOI | MR | Zbl
[15] Zhu J., “Dividend optimization for a regime-switching diffusion model with restricted dividend rates”, Astin Bull., 44:2 (2014), 459–494 | DOI | Zbl
[16] Zhu J., Chen F., “Dividend optimization for regime–switching general diffusions”, Insurance: Mathematics and Economics, 53:2 (2013), 439–456 | DOI | MR | Zbl
[17] Jiang Z., Pistorius M., “Optimal dividend distribution under Markov regime switching”, Finance and Stochastics, 16:3 (2012), 449–476 | DOI | MR | Zbl
[18] Sotomayor L. R., Cadenillas A., “Classical and singular stochastic control for the optimal dividend policy when there is regime switching”, Insurance: Mathematics and Economics, 48:3 (2011), 344–354 | DOI | MR | Zbl
[19] Liang Z., Yuen K. C., Guo J., “Optimal proportional reinsurance and investment in a stock market with Ornstein–Uhlenbeck process”, Insurance: Mathematics and Economics, 49:2 (2011), 207–215 | DOI | MR | Zbl
[20] Krylov N. V., Upravlyaemye protsessy diffuzionnogo tipa, Nauka, M., 1977 | MR
[21] Pham H., Continuous-time Stochastic Control and Optimization with Financial Applications, Springer, Berlin, 2009 | MR
[22] Touzi N., Optimal stochastic control, stochastic target problems, and backward SDE, Ser. Fields Institute Monographs, 29, Springer, N.Y., 2013 | DOI | MR | Zbl
[23] Crandall M., Ishii H., Lions P.-L., “User's guide to viscosity solutions of second-order partial differential equations”, Bull. Amer. Math. Soc., 27:1 (1992), 1–67 | DOI | MR | Zbl
[24] Jakobsen E. R., “Monotone Schemes”, Encyclopedia of Quantitative Finance, 2010, 1253–1263
[25] Jensen R., “Uniqueness criteria for viscosity solutions of fully nonlinear elliptic partial differential equations”, Indiana Univ. Math. J., 38:3 (1989), 629–667 | DOI | MR | Zbl
[26] Bardi M., Bottacin S., “On the Dirichlet problem for nonlinear degenerate elliptic equations and applications to optimal control”, Rend. Sem. Mat. Univ. Politec. Torino, 56 (1998), 13–39 | MR | Zbl
[27] Ishii H., “On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE's”, Comm. Pure Appl. Math., 42:1 (1989), 15–45 | DOI | MR | Zbl
[28] Barles G., Rouy E., “A strong comparison result for the Bellman equation arising in stochastic exit time control problems and its applications”, Comm. Partial Differential Equations, 22:11–12 (1998), 1995–2033 | MR
[29] Barles G., Burdeau J., “The Dirichlet problem for semilinear second-order degenerate elliptic equations and applications to stochastic exit time control problems”, Comm. Partial Differential Equations, 20:1–2 (1995), 129–178 | DOI | MR | Zbl
[30] Rokhlin D. B., “Verification by stochastic Perron's method in stochastic exit time control problems”, J. Math. Anal. Appl., 419:1 (2014), 433–446 | DOI | MR | Zbl
[31] Oberman A., “Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton–Jacobi equations and free boundary problems”, SIAM J. Numer. Anal., 44:2 (2006), 879–895 | DOI | MR | Zbl
[32] Barles G., Souganidis P. E., “Convergence of approximation schemes for fully nonlinear second order equations”, Asymptotic Anal., 4:3 (1991), 271–283 | MR | Zbl
[33] Rishel R., “Optimal portfoliomanagement with partial observations and power utility function”, Stochastic analysis, control, optimization and applications, Volume in Honor of W. H. Fleming, Birkhauser, Boston, 1999, 605–619 | DOI | MR | Zbl