PID controllers of a~two-mass system and complex pairs of multiplicity~2
Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 1, pp. 56-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the stability of a one-channel two-mass system controlled by a proportional integral differential (PID) controller. The controlling force is applied only to one of the masses and the output is the deviation of this mass. It is shown that, among PID controllers, the greatest stability is provided by the regulators for which the right vertical of the roots of the characterisitc polynomial contains a complex pair of multiplicity 2.
Keywords: modal synthesis, lowered-order regulator, greatest stability degree, maximum stability degree, limit stability degree.
@article{SJIM_2015_18_1_a4,
     author = {A. N. Koryukin and A. A. Voevoda},
     title = {PID controllers of a~two-mass system and complex pairs of multiplicity~2},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {56--68},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_1_a4/}
}
TY  - JOUR
AU  - A. N. Koryukin
AU  - A. A. Voevoda
TI  - PID controllers of a~two-mass system and complex pairs of multiplicity~2
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2015
SP  - 56
EP  - 68
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2015_18_1_a4/
LA  - ru
ID  - SJIM_2015_18_1_a4
ER  - 
%0 Journal Article
%A A. N. Koryukin
%A A. A. Voevoda
%T PID controllers of a~two-mass system and complex pairs of multiplicity~2
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2015
%P 56-68
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2015_18_1_a4/
%G ru
%F SJIM_2015_18_1_a4
A. N. Koryukin; A. A. Voevoda. PID controllers of a~two-mass system and complex pairs of multiplicity~2. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 1, pp. 56-68. http://geodesic.mathdoc.fr/item/SJIM_2015_18_1_a4/

[1] Bertocco M., Cappellazzo S., Flammini A., Parvis M., “A multi-layer architecture for distributed data acquisition”, Proc. 19 IEEE Instrumentation and Measurement Technology Conf., v. 2, 2002, 1261–1264 | DOI

[2] Astrom K. J., Hagglund T., Advanced PID Control, Boston, 2006

[3] Entsiklopediya ASU TP URL: http://bookasutp.ru/Chapter5_1.aspx

[4] Leva A., Cox C., Ruano A., “Hands-on PID autotuning: a guide to better utilization”, IFAC Professional Brief URL: http://www.ifac-control.org

[5] Pervozvanskii A. A., Kurs teorii avtomaticheskogo upravleniya, Uchebnoe posobie, Nauka, M., 1986

[6] Polyak B. T., Scherbakov P. S., Robastnaya ustoichivost i upravlenie, Nauka, M., 2002

[7] Voevoda A. A., Chekhonadskikh A. V., “Optimizatsiya raspolozheniya polyusov sistemy avtomaticheskogo upravleniya s regulyatorom ponizhennogo poryadka”, Avtometriya, 45:5 (2009), 113–123

[8] Gryazina E. N., Polyak B. T., Gremba A. A., “Sovremennoe sostoyanie metoda $D$-razbieniya”, Avtomatika i telemekhanika, 2008, no. 12, 3–40 | MR | Zbl

[9] Shubladze A. M., Popadko V. E., Kuznetsov S. I., Yakusheva A. A., “Issledovanie optimalnykh po stepeni ustoichivosti reshenii pri PID upravlenii. Ch. 1”, Upravlenie bolshimi sistemami, 22, 2008, 86–100

[10] Shubladze A. M., Popadko V. E., Yakusheva A. A., “Issledovanie optimalnykh po stepeni ustoichivosti reshenii pri PID upravlenii. Ch. 2”, Upravlenie bolshimi sistemami, 23, 2008, 39–55

[11] Koryukin A. N., “Predel ustoichivosti po Gurvitsu dvukhmassovoi sistemy s PID-regulyatorom. Ch. 1”, Sb. nauch. trudov NGTU, 48:3 (2012), 71–104

[12] Koryukin A. N., “Predel ustoichivosti po Gurvitsu dvukhmassovoi sistemy s PID-regulyatorom. Ch. 2”, Sb. nauch. trudov NGTU, 49:4 (2012), 13–44

[13] Koryukin A. N., “Naibolshii zapas ustoichivosti dlya odnokanalnoi dvukhmassovoi sistemy s obobschennym PID-regulyatorom”, Nauch. vestn. NGTU, 49:4 (2012), 178–185