A network inventory control model in the case of quantitative competition
Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 1, pp. 14-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study is a mathematical model of processes of cyclic transportation in logistic systems for the case of quantitative competition. We consider a network of a set of stations at each of which there are several enterprises with their warehouses. Enterprises supply and sell homogeneous products the demand for which is deterministic. Each enterprise uses a relaxation method of inventory control with the assumption of deficiency when modeling control systems. Existence conditions for an equilibrium solution for the model are given.
Keywords: logistic system, quantitative competition, internal strategy, external strategy, Nash equilibrium in pure strategy, inventory control.
@article{SJIM_2015_18_1_a1,
     author = {N. A. Gasratova and M. G. Gasratov},
     title = {A network inventory control model in the case of quantitative competition},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {14--27},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2015_18_1_a1/}
}
TY  - JOUR
AU  - N. A. Gasratova
AU  - M. G. Gasratov
TI  - A network inventory control model in the case of quantitative competition
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2015
SP  - 14
EP  - 27
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2015_18_1_a1/
LA  - ru
ID  - SJIM_2015_18_1_a1
ER  - 
%0 Journal Article
%A N. A. Gasratova
%A M. G. Gasratov
%T A network inventory control model in the case of quantitative competition
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2015
%P 14-27
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2015_18_1_a1/
%G ru
%F SJIM_2015_18_1_a1
N. A. Gasratova; M. G. Gasratov. A network inventory control model in the case of quantitative competition. Sibirskij žurnal industrialʹnoj matematiki, Tome 18 (2015) no. 1, pp. 14-27. http://geodesic.mathdoc.fr/item/SJIM_2015_18_1_a1/

[1] Lokshin E. Yu., Ekonomika materialno-tekhnicheskogo snabzheniya, Ucheb. posobie, Gosplanizdat, M., 1963

[2] Fasolyak N. D., Upravlenie proizvodstvennymi zapasami (ekonomicheskii aspekt problemy), Ekonomika, M., 1972

[3] Khrutskii E. A., Sakovich V. A., Kolosov S. P., Optimizatsiya khozyaistvennykh svyazei i materialnykh zapasov: voprosy i metodologii, Ekonomika, M., 1977

[4] Koryagin M. E., Issledovanie i optimizatsiya matematicheskikh modelei protsessov tsiklicheskoi perevozki v logisticheskikh sistemakh, Avtoref. dis. $\dots$ kand. tekhn. nauk, Kemerovo, 2003

[5] Grigorev M. N., Dolgov A. P., Uvarov S. A., Upravlenie zapasami v logistike: metody, modeli, informatsionnye tekhnologii, Ucheb. posobie, Biznes-pressa, SPb., 2006

[6] Klijn F., Marco Slikker M., “Distribution center consolidation games”, Oper. Res. Lett., 33 (2005), 285–288 | DOI | MR | Zbl

[7] Yue Dai, Xiuli Chao, Shu-Cherng Fang, Henry L. W. Nuttle, “Game theoretic analysis of a distribution system with customer market search”, Ann. Oper. Res., 135 (2005), 223–238 | DOI | MR | Zbl

[8] Yugang Yu, George Q. Huang, “Nash game model for optimizing market strategies, configuration of platform products in a Vendor Managed Inventory (VMI) supply chain for a product family”, European J. Oper. Res., 206 (2010), 361–373 | DOI | MR | Zbl

[9] Ruoxi Guan, Xiaobo Zhao, “Pricing and inventory management in a system with multiple competing retailers under $(r,Q)$ policies”, Comput. Oper. Res., 38 (2011), 1294–1304 | DOI | MR | Zbl

[10] Xiang Fang, “Capacity games for partially complementary products under multivariate random demands”, Naval Res. Logistics, 59:2 (2012), 146–159 | DOI | MR | Zbl

[11] Zhixin Liu, “Equilibrium analysis of capacity allocation with demand competition”, Naval Res. Logistics, 59:3–4 (2012), 254–265 | MR

[12] Lozano S., Moreno P., Adenso-Diaz B., Algaba E., “Cooperative game theory approach to allocating benefits of horizontal cooperation”, European J. Oper. Res., 229 (2013), 444–452 | DOI | MR | Zbl

[13] Egri P., Vancza J., “A distributed coordinationmechanism for supply networks with asymmetric information”, European J. Oper. Res., 226 (2013), 452–460 | DOI | MR | Zbl

[14] Nagurney A., “Formulation and analysis of horizontal mergers among oligopolistic firms”, Comput. Manag. Sci., 7 (2010), 377–406 | DOI | MR | Zbl

[15] Gasratov M. G., Zakharov V. V., “Teoretiko-igrovye modeli optimizatsii tsepochki postavok dlya determinirovannogo sprosa”, Mat. teoriya igr i ee pril., 3:1 (2011), 23–59 | Zbl

[16] Tirol Zh., Rynki i rynochnaya vlast: teoriya organizatsii i promyshlennosti, v 2 t., Ekonom. shkola, SPb., 2000

[17] Khedli Dzh., Nelineinoe i dinamicheskoe programmirovanie, Mir, M., 1967

[18] Kukushkin N. S., Morozov V. V., Teoriya neantogonisticheskikh igr, Izd-vo MGU, M., 1984 | Zbl