Justification of a~discrete analog of the conjugate-operator model of the heat conduction problem
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 4, pp. 98-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the conjugate-operator model of the heat conduction problem, we construct and justify a discrete analog preserving the structure of the initial model. The justification of convergence is carried out for a difference scheme in the conjugate-operator form. It is shown that the difference scheme converges with second-order accuracy for the cases of discontinuous medium parameters in the Fourier law and nonuniform grids.
Keywords: heat conductivity problem, mathematical model, discrete analog, approximation, stability, difference scheme.
Mots-clés : convergence
@article{SJIM_2014_17_4_a9,
     author = {S. B. Sorokin},
     title = {Justification of a~discrete analog of the conjugate-operator model of the heat conduction problem},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {98--110},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_4_a9/}
}
TY  - JOUR
AU  - S. B. Sorokin
TI  - Justification of a~discrete analog of the conjugate-operator model of the heat conduction problem
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 98
EP  - 110
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_4_a9/
LA  - ru
ID  - SJIM_2014_17_4_a9
ER  - 
%0 Journal Article
%A S. B. Sorokin
%T Justification of a~discrete analog of the conjugate-operator model of the heat conduction problem
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 98-110
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_4_a9/
%G ru
%F SJIM_2014_17_4_a9
S. B. Sorokin. Justification of a~discrete analog of the conjugate-operator model of the heat conduction problem. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 4, pp. 98-110. http://geodesic.mathdoc.fr/item/SJIM_2014_17_4_a9/

[1] Konovalov A. N., Sorokin S. B., Struktura uravnenii teorii uprugosti. Staticheskaya zadacha, Preprint No 665, VTs SO AN SSSR, Novosibirsk, 1986, 27 pp. | MR

[2] Konovalov A. N., “Chislennye metody v staticheskikh zadachakh teorii uprugosti”, Sib. mat. zhurn., 36:3 (1995), 573–589 | MR | Zbl

[3] Konovalov A. N., “Chislennye metody v dinamicheskikh zadachakh teorii uprugosti”, Sib. mat. zhurn., 38:3 (1997), 551–568 | MR | Zbl

[4] Konovalov A. N., “Sopryazhenno-faktorizovannye modeli v zadachakh matematicheskoi fiziki”, Sib. zhurn. vychisl. matematiki, 1:1 (1998), 25–58 | MR | Zbl

[5] Lebedev V. I., “Raznostnye analogi ortogonalnykh razlozhenii osnovnykh differentsialnykh operatorov i nekotorykh kraevykh zadach matematicheskoi fiziki. I”, Zhurn. vychisl. matematiki i mat. fiziki, 4:3 (1964), 449–465 | MR

[6] Lebedev V. I., “Raznostnye analogi ortogonalnykh razlozhenii osnovnykh differentsialnykh operatorov i nekotorykh kraevykh zadach matematicheskoi fiziki. II”, Zhurn. vychisl. matematiki i mat. fiziki, 4:4 (1964), 649–659 | MR

[7] Samarskii A. A., Tishkin V. F., Favorskii A. P., Shashkov M. Yu., Raznostnye analogi osnovnykh differentsialnykh operatorov pervogo poryadka, Preprint No 8, IPM AN SSSR, M., 1981, 29 pp. | MR

[8] Samarskii A. A., Tishkin V. F., Favorskii A. P., Shashkov M. Yu., “Operatornye raznostnye skhemy”, Differents. uravneniya, 17:7 (1981), 1317–1321 | MR

[9] Samarskii A. A., Tishkin V. F., Favorskii A. P., Shashkov M. Yu., “O predstavlenii raznostnykh skhem matematicheskoi fiziki v operatornoi forme”, Dokl. AN SSSR, 258:5 (1981), 1092–1096 | MR

[10] Samarskii A. A., Koldoba A. V., Poveschenko Yu. A., Tishkin V. F., Favorskii A. P., Raznostnye skhemy na neregulyarnykh setkakh, Minsk, 1996

[11] Berndt M., Lipnikov K., Moulton J. D., Shashkov M., “Convergence of mimetic finite difference discretizations of diffusion equation”, East-West J. Numer. Math., 9 (2001), 253–284 | MR

[12] Hyman J., Morel J., Shashkov M., Steinberg S., “Mimetic finite differencemethods for diffusion equation”, Comput. Geosciences, 6:3–4 (2002), 333–352 | DOI | MR | Zbl

[13] Brezzi F., Lipnikov K., Shashkov M., “Convergence of mimetic finite difference methods for diffusion problems on polyhedralmeshes”, SIAM J. Numer. Anal., 43 (2005), 1872–1896 | DOI | MR | Zbl

[14] Lipnikov K., Shashkov M., Svyatskiy D., “The mimetic finite difference discretization of diffusion problems on unstructured polyhedral meshes”, J. Comput. Physics, 211 (2006), 473–491 | DOI | MR | Zbl

[15] Berndt M., Lipnikov K., Shashkov M., Weeler M. F., Yotov I., “A mortar mimetic finite difference method on non-matching grids”, Numer. Math., 102 (2005), 203–230 | DOI | MR | Zbl

[16] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1979 | MR

[17] Sorokin S. B., Matematicheskie modeli s sopryazhenno-operatornoi strukturoi dlya statsionarnykh zadach mekhaniki sploshnoi sredy, Dis. $\dots$ dokt. fiz.-mat. nauk, Novosibirsk, 2001