Study of iterative algorithm convergence for numerical solving of problems of thermal convection in variables ``stream function-vorticity''
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 3, pp. 48-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

The operator-difference equations, approximating the differential problems of thermal convection for an incompressible fluid in variables “stream function-vorticity” are examined; the issues of iterative schemes convergence for the implementation of their decisions are considered. Research is conducted by the priori estimates method. Limit values for vorticity are selected as Thom formulas. Evaluation of boundedness and the condition of uniqueness for solution of a problem are provided. By introducing auxiliary function of vorticity, given grid equations reduced to relationship with homogeneous boundary conditions. Implicit iterative algorithms for numerical implementation of solving of grid equations for which, when executing conditions equivalent to the uniqueness condition, estimations of convergence speed are received. The behavior of iterations in the case of a Stokes linear problem is analyzed. To illustrate the possibilities of considered iterative algorithms, the problem in a closed area with heated side is reviewed. Calculations on the iterative algorithm of variable directions are performed. The results of numerical calculations are analyzed.
Keywords: problem of thermal convection in the variables “stream function-vorticity”, difference problem, stability, priori estimates, iteration algorithm.
Mots-clés : convergence
@article{SJIM_2014_17_3_a4,
     author = {N. T. Danaev and F. S. Amenova},
     title = {Study of iterative algorithm convergence for numerical solving of problems of thermal convection in variables ``stream function-vorticity''},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {48--58},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a4/}
}
TY  - JOUR
AU  - N. T. Danaev
AU  - F. S. Amenova
TI  - Study of iterative algorithm convergence for numerical solving of problems of thermal convection in variables ``stream function-vorticity''
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 48
EP  - 58
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a4/
LA  - ru
ID  - SJIM_2014_17_3_a4
ER  - 
%0 Journal Article
%A N. T. Danaev
%A F. S. Amenova
%T Study of iterative algorithm convergence for numerical solving of problems of thermal convection in variables ``stream function-vorticity''
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 48-58
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a4/
%G ru
%F SJIM_2014_17_3_a4
N. T. Danaev; F. S. Amenova. Study of iterative algorithm convergence for numerical solving of problems of thermal convection in variables ``stream function-vorticity''. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 3, pp. 48-58. http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a4/

[1] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1975

[2] Tarunin E. L., Vychislitelnyi eksperiment v zadachakh svobodnoi konvektsii, Izd-vo Irkutsk. gos. un-ta, Irkutsk, 1990

[3] Tom A., Eiplt K., Chislovye raschety polei v tekhnike i fizike, Energiya, M., 1964

[4] Voevodin A. F., “Ustoichivost i realizatsiya neyavnykh skhem dlya uravnenii Stoksa”, Zhurn. vychisl. matematiki i mat. fiziki, 11:1 (1993), 119–130 | MR | Zbl

[5] Voevodin A. F., Yushkova T. V., “Chislennyi metod resheniya nachalno-kraevykh zadach dlya uravnenii Nave–Stoksa v zamknutykh oblastyakh na osnove metoda rasschepleniya”, Sib. zhurn. vychisl. matematiki, 2:4 (1999), 321–332 | Zbl

[6] Konovalov A. N., “K teorii poperemenno-treugolnogo iteratsionnogo metoda”, Sib. mat. zhurn., 43:3 (2002), 552–572 | MR | Zbl

[7] Sukhinov A. I., Chistyakov A. E., “Adaptivnyi modifitsirovannyi poperemenno-treugolnyi iteratsionnyi metod dlya resheniya setochnyx uravnenii s nesamosopryazhennym operatorom”, Mat. modelirovanie, 24:1 (2012), 3–20 | MR | Zbl

[8] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR

[9] Temam R., Uravneniya Nave–Stoksa: teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[10] Vabischevich P. N., “Realizatsiya kraevykh uslovii pri reshenii uravnenii Nave–Stoksa v peremennykh ‘funktsiya toka–vikhr skorosti’ ”, Dokl. AN SSSR, 273:1 (1983), 22–26 | MR

[11] Danaev N. T., Smagulov Sh., “Ob odnoi metodike chislennogo resheniya uravnenii Nave–Stoksa v peremennykh $(\psi,\omega)$”, Modelirovanie v mekhanike, 22:5 (1991), 38–47 | MR | Zbl