Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2014_17_3_a4, author = {N. T. Danaev and F. S. Amenova}, title = {Study of iterative algorithm convergence for numerical solving of problems of thermal convection in variables ``stream function-vorticity''}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {48--58}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a4/} }
TY - JOUR AU - N. T. Danaev AU - F. S. Amenova TI - Study of iterative algorithm convergence for numerical solving of problems of thermal convection in variables ``stream function-vorticity'' JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2014 SP - 48 EP - 58 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a4/ LA - ru ID - SJIM_2014_17_3_a4 ER -
%0 Journal Article %A N. T. Danaev %A F. S. Amenova %T Study of iterative algorithm convergence for numerical solving of problems of thermal convection in variables ``stream function-vorticity'' %J Sibirskij žurnal industrialʹnoj matematiki %D 2014 %P 48-58 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a4/ %G ru %F SJIM_2014_17_3_a4
N. T. Danaev; F. S. Amenova. Study of iterative algorithm convergence for numerical solving of problems of thermal convection in variables ``stream function-vorticity''. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 3, pp. 48-58. http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a4/
[1] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1975
[2] Tarunin E. L., Vychislitelnyi eksperiment v zadachakh svobodnoi konvektsii, Izd-vo Irkutsk. gos. un-ta, Irkutsk, 1990
[3] Tom A., Eiplt K., Chislovye raschety polei v tekhnike i fizike, Energiya, M., 1964
[4] Voevodin A. F., “Ustoichivost i realizatsiya neyavnykh skhem dlya uravnenii Stoksa”, Zhurn. vychisl. matematiki i mat. fiziki, 11:1 (1993), 119–130 | MR | Zbl
[5] Voevodin A. F., Yushkova T. V., “Chislennyi metod resheniya nachalno-kraevykh zadach dlya uravnenii Nave–Stoksa v zamknutykh oblastyakh na osnove metoda rasschepleniya”, Sib. zhurn. vychisl. matematiki, 2:4 (1999), 321–332 | Zbl
[6] Konovalov A. N., “K teorii poperemenno-treugolnogo iteratsionnogo metoda”, Sib. mat. zhurn., 43:3 (2002), 552–572 | MR | Zbl
[7] Sukhinov A. I., Chistyakov A. E., “Adaptivnyi modifitsirovannyi poperemenno-treugolnyi iteratsionnyi metod dlya resheniya setochnyx uravnenii s nesamosopryazhennym operatorom”, Mat. modelirovanie, 24:1 (2012), 3–20 | MR | Zbl
[8] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR
[9] Temam R., Uravneniya Nave–Stoksa: teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl
[10] Vabischevich P. N., “Realizatsiya kraevykh uslovii pri reshenii uravnenii Nave–Stoksa v peremennykh ‘funktsiya toka–vikhr skorosti’ ”, Dokl. AN SSSR, 273:1 (1983), 22–26 | MR
[11] Danaev N. T., Smagulov Sh., “Ob odnoi metodike chislennogo resheniya uravnenii Nave–Stoksa v peremennykh $(\psi,\omega)$”, Modelirovanie v mekhanike, 22:5 (1991), 38–47 | MR | Zbl