On the modeling of the shrink fit technology
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 3, pp. 40-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve a one-dimensional problem of the theory of thermal stresses that models shrink fit on a cylindrical shaft. A distinctive feature in the statement is the account taken of the emerging and developing a plastic flow of the material of the assembly elements because of the nonstationarity of the temperature field and the dependence of the yield strength of the material on temperature. It is shown that irreversible deformation can significantly reduce the level of the final residual stresses providing the desired tightness.
Keywords: elasticity, plasticity, shrink fit, thermal stress, residual deformation, residual stress.
@article{SJIM_2014_17_3_a3,
     author = {A. A. Burenin and E. P. Dats and A. V. Tkacheva},
     title = {On the modeling of the shrink fit technology},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {40--47},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a3/}
}
TY  - JOUR
AU  - A. A. Burenin
AU  - E. P. Dats
AU  - A. V. Tkacheva
TI  - On the modeling of the shrink fit technology
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 40
EP  - 47
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a3/
LA  - ru
ID  - SJIM_2014_17_3_a3
ER  - 
%0 Journal Article
%A A. A. Burenin
%A E. P. Dats
%A A. V. Tkacheva
%T On the modeling of the shrink fit technology
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 40-47
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a3/
%G ru
%F SJIM_2014_17_3_a3
A. A. Burenin; E. P. Dats; A. V. Tkacheva. On the modeling of the shrink fit technology. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 3, pp. 40-47. http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a3/

[1] Belkin I. M., Dopuski i posadki, Mashinostroenie, M., 1992

[2] V. D. Myagkov [i dr.], Dopuski i posadki, Spravochnik, Ch. 1, Mashinostroenie, L., 1982

[3] Gaffarov R. F., Schenyatskii A. V., “Primenenie metoda konechnykh elementov dlya povyshenie nagruzochnoi sposobnosti soedinenii, sobiraemykh termicheskimmetodom”, Vysokie tekhnologii, 2004, no. 3, 162–167

[4] Shevchenko Yu. N., Termoplastichnost pri peremennykh nagruzheniyakh, Nauk. dumka, Kiev, 1970

[5] Makhnenko V. I., Velikoivanenko E. A., “Uprugoplasticheskoe sostoyanie v neogranichennoi tonkoi plastinke pri proizvolnom osesimmetrichnom nagreve”, Dokl. nauch. soveschaniya, v. 6, Teplovye napryazheniya v elementakh konstruktsii, 1966, 63–70

[6] Burenin A. A., Kovtanyuk L. V., Panchenko G. L., “K modelirovaniyubolshikh uprugovyazkikh deformatsii s uchetom teplofizicheskikh effektov”, Izv. RAN. Mekhanika tverdogo tela, 2010, no. 4, 107–120

[7] Aleksandrov S. E., Lyalina E. A., Novozhilova O. V., “Vliyanie zavisimosti predela tekuchesti ot temperatury na napryazhennoe sostoyanie v tonkom polom diske”, Problemy mashinostroeniya i nadezhnosti mashin, 2013, no. 3, 43–48

[8] Boli B., Ueiner Dzh., Teoriya temperaturnykh napryazhenii, Mir, M., 1964

[9] Bykovtsev G. I., Ivlev D. D., Teoriya plastichnosti, Dalnauka, Vladivostok, 1998

[10] Ivlev D. D., “Ob opredelenii peremeschenii v uprugoplasticheskikh zadachakh teorii idealnoi plastichnosti”, Uspekhi mekhaniki deformiruemykh sred, K 100-letiyu so dnya rozhdeniya akad. V. G. Galerkina, Nauka, M., 1975, 236–240