Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2014_17_3_a11, author = {P. A. Filonenko and S. N. Postovalov}, title = {Study of the influence of the distribution law of censoring times and the censoring degree on the power of homogeneity tests}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {122--134}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a11/} }
TY - JOUR AU - P. A. Filonenko AU - S. N. Postovalov TI - Study of the influence of the distribution law of censoring times and the censoring degree on the power of homogeneity tests JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2014 SP - 122 EP - 134 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a11/ LA - ru ID - SJIM_2014_17_3_a11 ER -
%0 Journal Article %A P. A. Filonenko %A S. N. Postovalov %T Study of the influence of the distribution law of censoring times and the censoring degree on the power of homogeneity tests %J Sibirskij žurnal industrialʹnoj matematiki %D 2014 %P 122-134 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a11/ %G ru %F SJIM_2014_17_3_a11
P. A. Filonenko; S. N. Postovalov. Study of the influence of the distribution law of censoring times and the censoring degree on the power of homogeneity tests. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 3, pp. 122-134. http://geodesic.mathdoc.fr/item/SJIM_2014_17_3_a11/
[1] Smirnov N. V., “Tables for estimating the goodness of fit of empirical distributions”, Ann. Math. Statist., 19:1 (1948), 279–281 | DOI | MR | Zbl
[2] Lehmann E. L., “Consistency and unbiasedness of certain nonparametric tests”, Ann. Math. Statist., 22:1 (1951), 165–179 | DOI | MR | Zbl
[3] Rosenblatt M., “Limit theorems associated with variants of the von Mises statistic”, Ann. Math. Statist., 23:1 (1952), 617–623 | DOI | MR | Zbl
[4] Pettitt A. N., “A two-sample Anderson–Darling rank statistic”, Biometrika, 63:1 (1976), 161–168 | MR | Zbl
[5] Gehan E. A., “A generalized Wilcoxon test for comparing arbitrarily singly-censored samples”, Biometrika, 52:1/2 (1965), 203–223 | DOI | MR | Zbl
[6] Peto R., Peto J., “Asymptotically efficient rank invariant test procedures”, J. Royal Statist. Soc. Ser. A (General), 135:2 (1972), 185–207 | DOI
[7] Lee E. T., Wang J. W., Statistical Methods for Survival Data Analysis, Wiley Series in Probability and Statistics, Wiley, N.Y., 2003 | DOI | MR | Zbl
[8] Pepe M. S., Fleming T. R., “Weighted Kaplan–Meier statistics: A class of distance tests for censored survival data”, Biometrics, 45 (1989), 497–507 | DOI | MR | Zbl
[9] Kaplan E. L., Meier P., “Nonparametric estimator from incomplete observation”, J. Amer. Statist. Assoc., 53 (1958), 457–481 | DOI | MR | Zbl
[10] Fleming T. R., Harrington D. P., Counting Process and Survival Analysis, Wiley, N.Y., 1991 | MR | Zbl
[11] Bagdonavičius V. B., Levuliene R. J., Nikulin M. S., Zdorova-Cheminade O., “Tests for equality of survival distributions against non-location alternatives”, Lifetime Data Anal., 10:4 (2004), 445–460 | DOI | MR | Zbl
[12] Bagdonavičius V. B., Nikulin M., “On goodness-of-fit tests for homogeneity and proportional hazards”, Appl. Stochastic Models in Business and Industry, 22:1 (2006), 607–619 | DOI | MR | Zbl
[13] Martinez Ruvie L. M. C., Naranjo Joshua D., “A pretest for choosing between logrank and Wilcoxon tests in the two-sample problem”, Internat. J. Statist., 68:2 (2010), 111–125 | MR