Detecting mistakes and filling gaps in data cubes
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 2, pp. 50-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the family of ZET algorithms, designed to detect gross errors and gaps in “object-parameter” data tables and “object-parameter-time” data cubes. To work with each element of the table, we use information not from the entire table but only out of its “competent” subtable. We also consider methods of selecting a competent subtable having tools for avoiding falling into local extreme. The example is exhibited of a ZET algorithm for solving some applied problem.
Keywords: gap filling, rival similarity function.
@article{SJIM_2014_17_2_a5,
     author = {N. G. Zagoruyko and V. V. Tatarnikov},
     title = {Detecting mistakes and filling gaps in data cubes},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {50--58},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a5/}
}
TY  - JOUR
AU  - N. G. Zagoruyko
AU  - V. V. Tatarnikov
TI  - Detecting mistakes and filling gaps in data cubes
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 50
EP  - 58
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a5/
LA  - ru
ID  - SJIM_2014_17_2_a5
ER  - 
%0 Journal Article
%A N. G. Zagoruyko
%A V. V. Tatarnikov
%T Detecting mistakes and filling gaps in data cubes
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 50-58
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a5/
%G ru
%F SJIM_2014_17_2_a5
N. G. Zagoruyko; V. V. Tatarnikov. Detecting mistakes and filling gaps in data cubes. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 2, pp. 50-58. http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a5/

[1] Buck S. F., “A method of estimation of missing values in multivariate data”, J. Roy. Statist. Soc. Ser. B, 22 (1960), 202–206 | MR

[2] Gleason T. C., Staelin R., “A proposal for handling missing data”, Psychometrika, 40 (1975), 229–252 | DOI | Zbl

[3] Frane G. M., “Some simple procedure for handling missing values in multivariate analysis”, Psychometrika, 41 (1976), 409–415 | DOI | MR | Zbl

[4] Rastrigin L. A., Ponomarev Yu. P., Ekstrapolyatsionnye metody proektirovaniya i upravleniya, Mashinostroenie, M., 1986

[5] Zhanatauvov S. U., “Metody prognosticheskikh peremennykh”, Vychislitelnye sistemy, 88, 1981, 151–155

[6] Beale E. M., Little R. J., “Missing values in multivariate analysis”, J. Roy. Statist. Soc. Ser. B, 37 (1975), 129–145 | MR | Zbl

[7] Dempster A. P., Laird N. M., Rubin D. B., “Maximum likelihood from incomplete data via the EM-algorithm”, J. Roy. Statist. Soc. Ser. B, 39 (1977), 1–38 | MR | Zbl

[8] Zagoruiko N. G., Elkina V. N., Temirkaev V. S., “Algoritm zapolneniya propuskov v empiricheskikh tablitsakh (algoritm ZET)”, Vychislitelnye sistemy, 61, 1975, 3–27 | Zbl

[9] Zagoruiko N. G., Ulyanov G. V., “Lokalnye metody zapolneniya probelov v empiricheskikh tablitsakh”, Vychislitelnye sistemy, 126, 1988, 75–121

[10] Zagoruiko N. G., Prikladnye metody analiza dannykh i znanii, Izd-vo In-ta matematiki, Novosibirsk, 1999

[11] Zagoruiko N. G., Kognitivnyi analiz dannykh, GEO, Novosibirsk, 2013