Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2014_17_2_a13, author = {M. V. Urev}, title = {Convergence of the finite element method for elliptic equations with strong degeneration}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {137--148}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a13/} }
TY - JOUR AU - M. V. Urev TI - Convergence of the finite element method for elliptic equations with strong degeneration JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2014 SP - 137 EP - 148 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a13/ LA - ru ID - SJIM_2014_17_2_a13 ER -
M. V. Urev. Convergence of the finite element method for elliptic equations with strong degeneration. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 2, pp. 137-148. http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a13/
[1] Urev M. V., “Skhodimost metoda konechnykh elementov dlya osesimmetrichnoi zadachi magnitostatiki”, Sib. zhurn. vychisl. matematiki, 9:1 (2006), 63–79 | Zbl
[2] Gopalakrishnan J., Pasciak J. E., “The convergence of V-cycle multigrid algorithms for axisymmetric Laplace and Maxwell equations”, Math. Comp., 75 (2006), 1697–1719 | DOI | MR | Zbl
[3] Dubois F., Duprey S., Convergence of an axisymmetric finite element, Numer. Analysis and Partial Differential Equations, Bat. 425, F-91405, 2008
[4] Ciarlet P. (Jr.), Jung B., Kaddouri S., Labrunie S., Zou J., “The Fourier singular cmplement method for the Poisson problem. Part II: Axisymmetric domains”, Numer. Math., 102 (2006), 583–610 | DOI | MR | Zbl
[5] Mercier B., Raugel G., “Résolution d'un problème aux limites dans un ouvert axisymétrique par éleménts finis en $(r,z)$ et séries de Fourier en $\theta$”, RAIRO Analyse numérique, 16:4 (1982), 405–461 | MR | Zbl
[6] Gavrilov A. V., Gureva Ya. L., Ilin V. P., Itskovich E. A., “Modelirovanie polei v aksialno simmetrichnoi srede”, Sib. zhurn. industr. matematiki, 4:1(7) (2001), 38–51 | MR | Zbl
[7] Nikolskii S. M., Lizorkin P. I., Miroshin N. V., “Vesovye funktsionalnye prostranstva i ikh prilozheniya k issledovaniyu kraevykh zadach dlya vyrozhdayuschikhsya ellipticheskikh uravnenii”, Izvestiya vuzov. Matematika, 1988, no. 8, 4–30 | MR | Zbl
[8] Lizorkin P. I., Nikolskii S. M., “Koertsitivnye svoistva ellipticheskogo uravneniya s vyrozhdeniem i obobschennoi pravoi chastyu”, Tr. Mat. in-ta AN SSSR, 161, 1983, 157–183 | MR | Zbl
[9] Vishik M. I., “Kraevye zadachi dlya uravnenii, vyrozhdayuschikhsya na granitse oblasti”, Mat. sb., 35(77):3 (1954), 513–568 | MR | Zbl
[10] Timerbaev M. R., “Multiplikativnoe vydelenie osobennosti v skhemakh MKE dlya ellipticheskikh vyrozhdayuschikhsya uravnenii”, Differents. uravneniya, 36:7 (2000), 979–985 | MR | Zbl
[11] Besov O. V., Kadlets Ya., Kufner A., “O nekotorykh svoistvakh vesovykh klassov”, Dokl. AN SSSR, 171:3 (1966), 514–516 | MR | Zbl
[12] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl
[13] Khardi G., Littlvud Dzh. E., Polia G., Neravenstva, Izd-vo inostr. lit., M., 1948
[14] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR
[15] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR
[16] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR
[17] Oganesyan L. A., Rukhovets L. A., Variatsionno-raznostnye metody resheniya ellipticheskikh uravnenii, Izd-vo AN ArmSSR, Erevan, 1979