Convergence of the finite element method for elliptic equations with strong degeneration
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 2, pp. 137-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the questions of numerical solution by the finite element method (FEM) for the first boundary value problem for an elliptic equation with degeneration on a part of the boundary. We pose the weak and strong variational statements in the function spaces with compatible weights that correspond to the problem. Using the method of the multiplicative separation of singularity for the finite element method that utilizes piecewise linear elements, we prove that the convergence of the approximate solutions to the exact solution in the weighted norm is no worse than in the case of an elliptic equation without degeneracy.
Keywords: elliptic equation with degeneracy, weighted Sobolev space, multiplicative separation of singularity, finite element method
Mots-clés : convergence.
@article{SJIM_2014_17_2_a13,
     author = {M. V. Urev},
     title = {Convergence of the finite element method for elliptic equations with strong degeneration},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {137--148},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a13/}
}
TY  - JOUR
AU  - M. V. Urev
TI  - Convergence of the finite element method for elliptic equations with strong degeneration
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 137
EP  - 148
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a13/
LA  - ru
ID  - SJIM_2014_17_2_a13
ER  - 
%0 Journal Article
%A M. V. Urev
%T Convergence of the finite element method for elliptic equations with strong degeneration
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 137-148
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a13/
%G ru
%F SJIM_2014_17_2_a13
M. V. Urev. Convergence of the finite element method for elliptic equations with strong degeneration. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 2, pp. 137-148. http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a13/

[1] Urev M. V., “Skhodimost metoda konechnykh elementov dlya osesimmetrichnoi zadachi magnitostatiki”, Sib. zhurn. vychisl. matematiki, 9:1 (2006), 63–79 | Zbl

[2] Gopalakrishnan J., Pasciak J. E., “The convergence of V-cycle multigrid algorithms for axisymmetric Laplace and Maxwell equations”, Math. Comp., 75 (2006), 1697–1719 | DOI | MR | Zbl

[3] Dubois F., Duprey S., Convergence of an axisymmetric finite element, Numer. Analysis and Partial Differential Equations, Bat. 425, F-91405, 2008

[4] Ciarlet P. (Jr.), Jung B., Kaddouri S., Labrunie S., Zou J., “The Fourier singular cmplement method for the Poisson problem. Part II: Axisymmetric domains”, Numer. Math., 102 (2006), 583–610 | DOI | MR | Zbl

[5] Mercier B., Raugel G., “Résolution d'un problème aux limites dans un ouvert axisymétrique par éleménts finis en $(r,z)$ et séries de Fourier en $\theta$”, RAIRO Analyse numérique, 16:4 (1982), 405–461 | MR | Zbl

[6] Gavrilov A. V., Gureva Ya. L., Ilin V. P., Itskovich E. A., “Modelirovanie polei v aksialno simmetrichnoi srede”, Sib. zhurn. industr. matematiki, 4:1(7) (2001), 38–51 | MR | Zbl

[7] Nikolskii S. M., Lizorkin P. I., Miroshin N. V., “Vesovye funktsionalnye prostranstva i ikh prilozheniya k issledovaniyu kraevykh zadach dlya vyrozhdayuschikhsya ellipticheskikh uravnenii”, Izvestiya vuzov. Matematika, 1988, no. 8, 4–30 | MR | Zbl

[8] Lizorkin P. I., Nikolskii S. M., “Koertsitivnye svoistva ellipticheskogo uravneniya s vyrozhdeniem i obobschennoi pravoi chastyu”, Tr. Mat. in-ta AN SSSR, 161, 1983, 157–183 | MR | Zbl

[9] Vishik M. I., “Kraevye zadachi dlya uravnenii, vyrozhdayuschikhsya na granitse oblasti”, Mat. sb., 35(77):3 (1954), 513–568 | MR | Zbl

[10] Timerbaev M. R., “Multiplikativnoe vydelenie osobennosti v skhemakh MKE dlya ellipticheskikh vyrozhdayuschikhsya uravnenii”, Differents. uravneniya, 36:7 (2000), 979–985 | MR | Zbl

[11] Besov O. V., Kadlets Ya., Kufner A., “O nekotorykh svoistvakh vesovykh klassov”, Dokl. AN SSSR, 171:3 (1966), 514–516 | MR | Zbl

[12] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[13] Khardi G., Littlvud Dzh. E., Polia G., Neravenstva, Izd-vo inostr. lit., M., 1948

[14] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR

[15] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[16] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[17] Oganesyan L. A., Rukhovets L. A., Variatsionno-raznostnye metody resheniya ellipticheskikh uravnenii, Izd-vo AN ArmSSR, Erevan, 1979