To the problem of modeling of reflexive behaviour in a~conflict on the example of a~biological community
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 2, pp. 107-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a two species model of a spatially distributed community. The species in the community are prey-predator related, and each species is distributed over two stations. Transfers between stations (migrations) are targeted and maximize the reproduction coefficient of each species. Both species are supposed to implement a reflexive behavior strategy for determining an optimal migration flux.
Keywords: two-species community, targeted migration, maximization, evolution optimality, parity.
@article{SJIM_2014_17_2_a10,
     author = {M. G. Sadovskii and M. Yu. Senashova},
     title = {To the problem of modeling of reflexive behaviour in a~conflict on the example of a~biological community},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {107--118},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a10/}
}
TY  - JOUR
AU  - M. G. Sadovskii
AU  - M. Yu. Senashova
TI  - To the problem of modeling of reflexive behaviour in a~conflict on the example of a~biological community
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 107
EP  - 118
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a10/
LA  - ru
ID  - SJIM_2014_17_2_a10
ER  - 
%0 Journal Article
%A M. G. Sadovskii
%A M. Yu. Senashova
%T To the problem of modeling of reflexive behaviour in a~conflict on the example of a~biological community
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 107-118
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a10/
%G ru
%F SJIM_2014_17_2_a10
M. G. Sadovskii; M. Yu. Senashova. To the problem of modeling of reflexive behaviour in a~conflict on the example of a~biological community. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 2, pp. 107-118. http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a10/

[1] Volterra V., “Variazioni e fluttuazioni del numero d'individui in specie animali conviventi”, Mem. Real Accad. Naz. Lincei (6), 2 (1926), 31–113

[2] Volterra V., Leçons sur la Théorie Mathématique de la Lutte pour la Vie, Gauthier-Villars, Paris, 1931 | Zbl

[3] Lotka A. J., Elements of Physical Biology, Williams Wilkens, Baltimore, 1925 | Zbl

[4] Turchin P., Complex Population Dynamics: A Theoretical/Empirical Synthesis, Univ. Press, Princeton, 2003 | MR | Zbl

[5] Pan-Ping Liu, “An analysis of a predator-prey model with both diffusion and migration”, Math. Comput. Modelling, 51:9–10 (2010), 1064–1070 | MR | Zbl

[6] Zijian Liu, Shouming Zhong, Chun Yin, Wufan Chen, “Two-patches prey impulsive diffusion periodic predator-prey model”, Comm. Nonlinear Sci. Numer. Simulation, 16:6 (2011), 2641–2655 | DOI | MR | Zbl

[7] Jianjun Jiao, Lansun Chen, Shaohong Cai, Limin Wang, “Dynamics of a stage-structured predator-preymodel with prey impulsively diffusing between two patches”, Nonlinear Analysis: Real World Appl., 11:4 (2010), 2748–2756 | DOI | MR | Zbl

[8] Zijuan Wen, Shengmao Fu, “Global solutions to a class of multi-species reaction-diffusion systems with cross-diffusions arising in population dynamics”, J. Comput. Appl. Math., 230:1 (2009), 34–43 | DOI | MR | Zbl

[9] Dhar J., “Population model with diffusion and supplementary forest resource in a two-patch habitat”, Appl. Math. Modelling, 32:7 (2008), 1219–1235 | DOI | MR | Zbl

[10] Jianjun Jiao, Xiaosong Yang, Shaohong Cai, Lansun Chen, “Dynamical analysis of a delayed predator-prey model with impulsive diffusion between two patches”, Math. Comput. Simulation, 80:3 (2009), 522–532 | DOI | MR | Zbl

[11] Kiss K., “$n$-Dimensional ratio-dependent predator-prey systems with diffusion”, Appl. Math. Comput., 205:1 (2008), 325–335 | DOI | MR | Zbl

[12] Condit R. et al., “Spatial patterns in the distribution of tropical tree species”, Science, 288 (2000), 1414–1418 | DOI

[13] Maron J. L., Harrison S., “Spatial Pattern Formation in an Insect Host-Parasitoid System”, Science, 278 (1997), 1619–1621 | DOI

[14] Soares P., Tomé M., “Distance-dependent competition measures for eucalyptus plantations in Portugal”, Ann. Forestry Sci., 56 (1999), 307–319 | DOI

[15] Sadovsky M. G., Gurevich Yu. L., Manukovsky N. S., “Kinetics of cell aggregation in continuous cultivation”, Dynamics of Chemical and Biological Systems, Nauka, Novosibirsk, 1989, 134–158

[16] Levitt P. R., “General kin selection models for genetic evolution of sib altruism in diploid and haplodiploid species”, Proc. Nat. Acad. Sci. USA, 72:11 (1975), 4531–4535 | DOI

[17] Strassmann J. E., Yong Zhu, Queller D. C., “Altruism and social cheating in the social amoeba Dictyostelium discoideum”, Nature, 408 (2000), 965–967 | DOI

[18] Gorban A. N., “Selection theorem for systems with inheritance”, Math. Model. Nat. Phenom., 2:4 (2007), 1–45 | DOI | MR

[19] Sadovskii M. G., “Optimizatsionnye modeli migratsii globalno informirovannykh osobei”, Matematicheskoe modelirovanie v biologii i khimii. Evolyutsionnyi podkhod, Nauka, Novosibirsk, 1992, 36–67

[20] Motolygin S. A., Sadovskii M. G., Chukov D. A., “Model populyatsii, osobi kotoroi sovershayut optimalnye migratsii”, Zhurn. obschei biologii, 60:4 (1999), 450–459

[21] Sadovskii M. G., “Model khischnik-zhertva, v kotoroi osobi sovershayut tselenapravlennye peremescheniya po prostranstvu”, Zhurn. obschei biologii, 62:3 (2001), 239–245

[22] Mitina O., Abraham F., Petrenko V., “Dynamical cognitivemodels of social issues in Russia”, Intern. J. Modern Physics C, 13:2 (2002), 229–251 | DOI | MR | Zbl

[23] Gottman J. M., Murray J. D., Swanson C., Tyson R., Swanson K. R., The Mathematics of Marriage: Dynamic Nonlinear Models, MIT Press, Cambridge, 2005 | MR

[24] Hermanus S. Geyer, Thomas Kontuly (eds.), Differential Urbanization: Integrating Spatial Models, Edward Arnold, London, 1996

[25] Rasmusen E., Games and Information: An Introduction to Game Theory, Oxford, 2001 | MR

[26] Myerson R. B., Game Theory: Analysis of Conflict, Univ. Press, Harvard, 1991 | MR | Zbl

[27] Lefebvre V. A., “Mentalism and behaviorism: merging?”, Reflexive Processes and Control, 2:2 (2003), 74–82 | MR

[28] Lefebvre V. A., “The law of self-reflexion”, Reflexive Processes and Control, 1:2 (2002), 361–391

[29] Lefebvre V. A., “Sketch of reflexive game theory”, Proc. Workshop on Multy-Reflexive Models of Agent Behavior, 1998, 1–42 | Zbl

[30] Svirezhev Yu. M., Logofet D. O., Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978 | MR