Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2014_17_2_a10, author = {M. G. Sadovskii and M. Yu. Senashova}, title = {To the problem of modeling of reflexive behaviour in a~conflict on the example of a~biological community}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {107--118}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a10/} }
TY - JOUR AU - M. G. Sadovskii AU - M. Yu. Senashova TI - To the problem of modeling of reflexive behaviour in a~conflict on the example of a~biological community JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2014 SP - 107 EP - 118 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a10/ LA - ru ID - SJIM_2014_17_2_a10 ER -
%0 Journal Article %A M. G. Sadovskii %A M. Yu. Senashova %T To the problem of modeling of reflexive behaviour in a~conflict on the example of a~biological community %J Sibirskij žurnal industrialʹnoj matematiki %D 2014 %P 107-118 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a10/ %G ru %F SJIM_2014_17_2_a10
M. G. Sadovskii; M. Yu. Senashova. To the problem of modeling of reflexive behaviour in a~conflict on the example of a~biological community. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 2, pp. 107-118. http://geodesic.mathdoc.fr/item/SJIM_2014_17_2_a10/
[1] Volterra V., “Variazioni e fluttuazioni del numero d'individui in specie animali conviventi”, Mem. Real Accad. Naz. Lincei (6), 2 (1926), 31–113
[2] Volterra V., Leçons sur la Théorie Mathématique de la Lutte pour la Vie, Gauthier-Villars, Paris, 1931 | Zbl
[3] Lotka A. J., Elements of Physical Biology, Williams Wilkens, Baltimore, 1925 | Zbl
[4] Turchin P., Complex Population Dynamics: A Theoretical/Empirical Synthesis, Univ. Press, Princeton, 2003 | MR | Zbl
[5] Pan-Ping Liu, “An analysis of a predator-prey model with both diffusion and migration”, Math. Comput. Modelling, 51:9–10 (2010), 1064–1070 | MR | Zbl
[6] Zijian Liu, Shouming Zhong, Chun Yin, Wufan Chen, “Two-patches prey impulsive diffusion periodic predator-prey model”, Comm. Nonlinear Sci. Numer. Simulation, 16:6 (2011), 2641–2655 | DOI | MR | Zbl
[7] Jianjun Jiao, Lansun Chen, Shaohong Cai, Limin Wang, “Dynamics of a stage-structured predator-preymodel with prey impulsively diffusing between two patches”, Nonlinear Analysis: Real World Appl., 11:4 (2010), 2748–2756 | DOI | MR | Zbl
[8] Zijuan Wen, Shengmao Fu, “Global solutions to a class of multi-species reaction-diffusion systems with cross-diffusions arising in population dynamics”, J. Comput. Appl. Math., 230:1 (2009), 34–43 | DOI | MR | Zbl
[9] Dhar J., “Population model with diffusion and supplementary forest resource in a two-patch habitat”, Appl. Math. Modelling, 32:7 (2008), 1219–1235 | DOI | MR | Zbl
[10] Jianjun Jiao, Xiaosong Yang, Shaohong Cai, Lansun Chen, “Dynamical analysis of a delayed predator-prey model with impulsive diffusion between two patches”, Math. Comput. Simulation, 80:3 (2009), 522–532 | DOI | MR | Zbl
[11] Kiss K., “$n$-Dimensional ratio-dependent predator-prey systems with diffusion”, Appl. Math. Comput., 205:1 (2008), 325–335 | DOI | MR | Zbl
[12] Condit R. et al., “Spatial patterns in the distribution of tropical tree species”, Science, 288 (2000), 1414–1418 | DOI
[13] Maron J. L., Harrison S., “Spatial Pattern Formation in an Insect Host-Parasitoid System”, Science, 278 (1997), 1619–1621 | DOI
[14] Soares P., Tomé M., “Distance-dependent competition measures for eucalyptus plantations in Portugal”, Ann. Forestry Sci., 56 (1999), 307–319 | DOI
[15] Sadovsky M. G., Gurevich Yu. L., Manukovsky N. S., “Kinetics of cell aggregation in continuous cultivation”, Dynamics of Chemical and Biological Systems, Nauka, Novosibirsk, 1989, 134–158
[16] Levitt P. R., “General kin selection models for genetic evolution of sib altruism in diploid and haplodiploid species”, Proc. Nat. Acad. Sci. USA, 72:11 (1975), 4531–4535 | DOI
[17] Strassmann J. E., Yong Zhu, Queller D. C., “Altruism and social cheating in the social amoeba Dictyostelium discoideum”, Nature, 408 (2000), 965–967 | DOI
[18] Gorban A. N., “Selection theorem for systems with inheritance”, Math. Model. Nat. Phenom., 2:4 (2007), 1–45 | DOI | MR
[19] Sadovskii M. G., “Optimizatsionnye modeli migratsii globalno informirovannykh osobei”, Matematicheskoe modelirovanie v biologii i khimii. Evolyutsionnyi podkhod, Nauka, Novosibirsk, 1992, 36–67
[20] Motolygin S. A., Sadovskii M. G., Chukov D. A., “Model populyatsii, osobi kotoroi sovershayut optimalnye migratsii”, Zhurn. obschei biologii, 60:4 (1999), 450–459
[21] Sadovskii M. G., “Model khischnik-zhertva, v kotoroi osobi sovershayut tselenapravlennye peremescheniya po prostranstvu”, Zhurn. obschei biologii, 62:3 (2001), 239–245
[22] Mitina O., Abraham F., Petrenko V., “Dynamical cognitivemodels of social issues in Russia”, Intern. J. Modern Physics C, 13:2 (2002), 229–251 | DOI | MR | Zbl
[23] Gottman J. M., Murray J. D., Swanson C., Tyson R., Swanson K. R., The Mathematics of Marriage: Dynamic Nonlinear Models, MIT Press, Cambridge, 2005 | MR
[24] Hermanus S. Geyer, Thomas Kontuly (eds.), Differential Urbanization: Integrating Spatial Models, Edward Arnold, London, 1996
[25] Rasmusen E., Games and Information: An Introduction to Game Theory, Oxford, 2001 | MR
[26] Myerson R. B., Game Theory: Analysis of Conflict, Univ. Press, Harvard, 1991 | MR | Zbl
[27] Lefebvre V. A., “Mentalism and behaviorism: merging?”, Reflexive Processes and Control, 2:2 (2003), 74–82 | MR
[28] Lefebvre V. A., “The law of self-reflexion”, Reflexive Processes and Control, 1:2 (2002), 361–391
[29] Lefebvre V. A., “Sketch of reflexive game theory”, Proc. Workshop on Multy-Reflexive Models of Agent Behavior, 1998, 1–42 | Zbl
[30] Svirezhev Yu. M., Logofet D. O., Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978 | MR