Regression models in the classification problem
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 1, pp. 86-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

We carry out a comparative analysis of the efficiency of several methods of classification (pattern recognition) based on regression models, in particular, logistic regression and its modifications. A new method for constructing a decision function is proposed. The method is based on the maximization of the area under the error curve over the linear functions in the space of the decision functions obtained by a special transformation. The performance of the method is illustrated by solving an applied problem.
Keywords: regression analysis, pattern recognition, machine learning, decision function, misclassification probability, logistic regression, Fisher linear discriminant.
@article{SJIM_2014_17_1_a9,
     author = {V. M. Nedel'ko},
     title = {Regression models in the classification problem},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {86--98},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a9/}
}
TY  - JOUR
AU  - V. M. Nedel'ko
TI  - Regression models in the classification problem
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 86
EP  - 98
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a9/
LA  - ru
ID  - SJIM_2014_17_1_a9
ER  - 
%0 Journal Article
%A V. M. Nedel'ko
%T Regression models in the classification problem
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 86-98
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a9/
%G ru
%F SJIM_2014_17_1_a9
V. M. Nedel'ko. Regression models in the classification problem. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 1, pp. 86-98. http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a9/

[1] Aivazyan S. A., Bukhshtaber V. M., Enyukov I. S., Meshalkin L. D., Prikladnaya statistika: klassifikatsiya i snizhenie razmernosti, Finansy i statistika, M., 1989

[2] Lbov G. S., “Vybor effektivnoi sistemy zavisimykh priznakov”, Vychisl. sistemy, 19, 1965, 21–34

[3] Lbov G. S., Startseva N. G., Logicheskie reshayuschie funktsii i voprosy statisticheskoi ustoichivosti reshenii, Izd-vo Instituta matematiki, Novosibirsk, 1999 | MR | Zbl

[4] Hastie T., Tibshirani R., Friedman J., The Elements of Statistical Learning, Springer-Verl., N.Y., 2001 | MR | Zbl

[5] Vorontsov K. V., Ivakhnenko A. A., Inyakin A. S., Lisitsa A. V., Minaev P. Yu., “ ‘Poligon’ – raspredelennaya sistema dlya empiricheskogo analiza zadach i algoritmov klassifikatsii”, Vseros. konf. “Matematicheskie metody raspoznavaniya obrazov-14”, MAKS Press, M., 2009, 503–506

[6] Lbov G. S., Startseva N. G., “Sravnenie algoritmov raspoznavaniya s pomoschyu programmnoi sistemy ‘Poligon’ ”, Vychislitelnye sistemy, 134, 1990, 56–66

[7] Nedelko V. M., “Ob intervalnom otsenivanii riska dlya reshayuschei funktsii”, Tavricheskii vestn. informatiki i matematiki, 2008, no. 2, 97–103

[8] Nedelko V. M., “Tochnye i empiricheskie otsenki veroyatnosti oshibochnoi klassifikatsii”, Nauchn. vestn. NGTU, 2011, no. 1(42), 3–16

[9] Langford J., Quantitatively tight sample complexity bounds, Carnegie Mellon Thesis, 2002 URL: http://citeseer.ist.psu.edu/langford02quantitatively.html | MR

[10] Vorontsov K. V., “Combinatorial probability and the tightness of generalization bounds”, Pattern Recognition and Image Analysis, 18:2 (2008), 243–259 | DOI

[11] Zadacha predskazaniya otklika klientov OTP banka, Konkurs po resheniyu prikladnoi zadachi iz oblasti bankovskogo marketinga, provodimyi v ramkakh Vseros. konf. “Matematicheskie metody raspoznavaniya obrazov MMRO-15” (g. Petrozavodsk, Respublika Kareliya, 11–17 sentyabrya 2011) URL: http://www.machinelearning.ru/wiki/images/d/d5/Mmro-15_contest.pdf