On the numerical simulation of filtration combustion of gases on multi-core computing systems
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 1, pp. 55-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We analyze the performance of some computational models of filtration gas combustion on multi-core computers. The analysis is limited to models based on explicit difference schemes. In particular, an explicit two-level parallel algorithm using an adaptive mesh is constructed The two ways of shared memory parallelization are applied: direct application of OpenMP directives and a special data distribution between the threads. It is shown numerically that the latter method provides a significant performance advantage.
Mots-clés : combustion wave, explicit scheme
Keywords: adaptive mesh, parallelization on shared memory.
@article{SJIM_2014_17_1_a6,
     author = {T. A. Kandryukova and Yu. M. Laevsky},
     title = {On the numerical simulation of filtration combustion of gases on multi-core computing systems},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {55--64},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a6/}
}
TY  - JOUR
AU  - T. A. Kandryukova
AU  - Yu. M. Laevsky
TI  - On the numerical simulation of filtration combustion of gases on multi-core computing systems
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 55
EP  - 64
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a6/
LA  - ru
ID  - SJIM_2014_17_1_a6
ER  - 
%0 Journal Article
%A T. A. Kandryukova
%A Yu. M. Laevsky
%T On the numerical simulation of filtration combustion of gases on multi-core computing systems
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 55-64
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a6/
%G ru
%F SJIM_2014_17_1_a6
T. A. Kandryukova; Yu. M. Laevsky. On the numerical simulation of filtration combustion of gases on multi-core computing systems. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 1, pp. 55-64. http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a6/

[1] Babkin V. S., Laevskii Yu. M., “Filtratsionnoe gorenie gazov”, Fizika goreniya i vzryva, 23:5 (1987), 27–44

[2] Dobrego K. V., Zhdanok S. A., Fizika filtratsionnogo goreniya gazov, Izd. In-ta teplo- i massoobmena NANB, Minsk, 2002

[3] Drobyshevich V. I., “Matematicheskaya model i algoritm dlya analiza sfericheskikh gibridnykh voln goreniya”, Sib. zhurn. industr. matematiki, 6:1 (2003), 12–15 | Zbl

[4] Laevskii Yu. M., Yausheva L. V., “Chislennoe modelirovanie filtratsionnogo goreniya gaza na osnove dvukhurovnevykh poluneyavnykh raznostnykh skhem”, Vychisl. tekhnologii, 12:2 (2007), 90–103

[5] Lax P. D., Wendroff B., “Difference schemes for hyperbolic equations with high order of accuracy”, Commun. Pure Appl. Math., 17:3 (1964), 381–398 | DOI | MR | Zbl

[6] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49:3 (1983), 357–393 | DOI | MR | Zbl

[7] Barakhnin V. B., Karamyshev V. B., Borodkin N. V., “TVD-skhema na podvizhnoi adaptivnoi setke”, Vychisl. tekhnologii, 5:1 (2000), 19–30 | MR | Zbl

[8] Laevskii Yu. M., Banushkina P. V., “Sostavnye yavnye skhemy”, Sib. zhurn. vychisl. matematiki, 3:2 (2000), 165–180 | Zbl

[9] Collino F., Fouquet T., Joly P., “A conservative space-time mesh refinement method for 1-D wave equation”, Numer. Math., 95 (2003), 197–221 | DOI | MR | Zbl

[10] Antonov A. S., Parallelnoe programmirovanie s ispolzovaniem tekhnologii OpenMP, Izd-vo MGU, M., 2009

[11] URL: http://www2.sscc.ru/HKC-30T/HKC-30T.htm