Numerical modeling of the integro-differential Korteweg--de Vries--Burgers equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 1, pp. 36-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop explicit and implicit schemes that are based on the finite volume method for the Korteweg–de Vries–Burgers equation which become multisymplectic for the Korteweg–de Vries equation. The resulting schemes have better stability on long-term calculations. An algorithm for calculating the Duhamel integral with a fixed amount of memory is proposed. The results of numerical experiments are presented.
Keywords: integral-differential equation, Hamiltonian, multisymplectic, explicit and implicit schemes, numerical experiment.
@article{SJIM_2014_17_1_a4,
     author = {N. I. Gorbenko},
     title = {Numerical modeling of the integro-differential {Korteweg--de} {Vries--Burgers} equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {36--45},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a4/}
}
TY  - JOUR
AU  - N. I. Gorbenko
TI  - Numerical modeling of the integro-differential Korteweg--de Vries--Burgers equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 36
EP  - 45
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a4/
LA  - ru
ID  - SJIM_2014_17_1_a4
ER  - 
%0 Journal Article
%A N. I. Gorbenko
%T Numerical modeling of the integro-differential Korteweg--de Vries--Burgers equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 36-45
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a4/
%G ru
%F SJIM_2014_17_1_a4
N. I. Gorbenko. Numerical modeling of the integro-differential Korteweg--de Vries--Burgers equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 1, pp. 36-45. http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a4/

[1] Karpman V. I., Nelineinye volny v dispergiruyuschikh sredakh, Nauka, M., 1973 | MR

[2] Berezin Yu. A., Chislennoe issledovanie nelineinykh voln v razrezhennoi plazme, Nauka, Novosibirsk, 1977 | MR

[3] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR

[4] Nakoryakov V. E., Pokusaev B. G., Shreiber I. R., Volnovaya dinamika gazo- i parozhidkostnykh sred, Energoatomizdat, M., 1990 | MR

[5] Bridges T., Reich S., “Numerical methods for Hamiltonian PDEs”, J. Phys. A: Math. Gen., 39 (2006), 5287–5320 | DOI | MR | Zbl

[6] Holmer J., “The initial-boundary value problem for the Korteweg–de Vries equation”, Comm. Partial Differential Equations, 31 (2006), 1151–1190 | DOI | MR | Zbl

[7] Zabusky N. J., Kruskal M. D., “Interaction of “soliton” in a collisionless plasma and the recurrence of initial states”, Phys. Rev., 15 (1965), 240–243 | Zbl

[8] McLachan R., “Symplectic integration of Hamiltonian wave equations”, Numer. Math., 66:1 (1994), 465–492 | DOI | MR

[9] Yanfen Cui, De-kang Mao, “Numerical method satisfying two conservation laws for the Korteweg–de Vries equation”, J. Comput. Phys., 227 (2007), 376–399 | DOI | MR | Zbl

[10] Wang Y. S., Wang B., Chen X., “An explicit scheme for the KdV equation”, Chinese Phys. Lett., 25:7 (2008), 2335–2338 | DOI

[11] Zhao P. F., Qin M. Z., “Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation”, J. Phys. A, 33:18 (2000), 3613–3626 | DOI | MR | Zbl

[12] Ascher U., McLachlan R. I., “On symplectic and multisymplectic schemes for the KdV equations”, J. Sci. Comput., 25:1 (2005), 83–104 | DOI | MR | Zbl

[13] Bakhvalov N. S., Chislennye metody, Nauka, M., 1975