An optimal control problem for a~stationary flow of a~Jeffreys medium with slip boundary condition
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 1, pp. 18-27

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an optimal control problem for the stationary motion equations of a Jeffreys viscoelastic medium with a Navier slip boundary condition. The control parameter is provided by an external force. We prove the existence of a weak solution minimizing a given cost functional and establish some properties of the solution set to the optimization problem.
Keywords: optimal control, flow control, non-Newtonian fluid, viscoelastic medium, Jeffreys model, Navier–Stokes equations, Navier slip boundary condition, weak solution, Galerkin method.
@article{SJIM_2014_17_1_a2,
     author = {E. S. Baranovskii},
     title = {An optimal control problem for a~stationary flow of {a~Jeffreys} medium with slip boundary condition},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {18--27},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a2/}
}
TY  - JOUR
AU  - E. S. Baranovskii
TI  - An optimal control problem for a~stationary flow of a~Jeffreys medium with slip boundary condition
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 18
EP  - 27
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a2/
LA  - ru
ID  - SJIM_2014_17_1_a2
ER  - 
%0 Journal Article
%A E. S. Baranovskii
%T An optimal control problem for a~stationary flow of a~Jeffreys medium with slip boundary condition
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 18-27
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a2/
%G ru
%F SJIM_2014_17_1_a2
E. S. Baranovskii. An optimal control problem for a~stationary flow of a~Jeffreys medium with slip boundary condition. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 1, pp. 18-27. http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a2/