On one model of anisotropic creep of materials
Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 1, pp. 114-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of proper modules and the states, revealing the structure of generalized Hooke's law, is applied to one model of the anisotropic steady-state creep of materials. The steady-state creep equations of incompressible materials are presented in an invariant form. The matrix of anisotropy coefficients of these materials is reduced to block form with nine independent components. The special case of an ortotropic incompressible material is considered for which the matrix of anisotropy coefficients corresponds to a nonor.
Keywords: steady-state creep, proper anisotropy coefficients and proper states, transversal isotropy, ortotropy, incompressibility.
Mots-clés : anisotropy coefficients
@article{SJIM_2014_17_1_a11,
     author = {N. I. Ostrosablin},
     title = {On one model of anisotropic creep of materials},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {114--119},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a11/}
}
TY  - JOUR
AU  - N. I. Ostrosablin
TI  - On one model of anisotropic creep of materials
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2014
SP  - 114
EP  - 119
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a11/
LA  - ru
ID  - SJIM_2014_17_1_a11
ER  - 
%0 Journal Article
%A N. I. Ostrosablin
%T On one model of anisotropic creep of materials
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2014
%P 114-119
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a11/
%G ru
%F SJIM_2014_17_1_a11
N. I. Ostrosablin. On one model of anisotropic creep of materials. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 1, pp. 114-119. http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a11/

[1] Annin B. D., Ostrosablin N. I., “Anizotropiya uprugikh svoistv materialov”, Prikl. mekhanika i tekhn. fizika, 49:6 (2008), 131–151 | MR

[2] Ostrosablin N. I., “Kriterii predelnosti i model neuprugogo deformirovaniya anizotropnykh sred”, Prikl. mekhanika i tekhn. fizika, 52:6 (2011), 165–176

[3] Annin B. D., Ostrosablin N. I., “O tenzore anizotropii potentsialnoi modeli ustanovivsheisya polzuchesti”, Prikl. mekhanika i tekhn. fizika, 55:1 (2014), 5–12

[4] Ostrosablin N. I., “Ob invariantakh tenzora chetvertogo ranga modulei uprugosti”, Sib. zhurn. industr. matematiki, 1:1 (1998), 155–163 | MR | Zbl

[5] Rabotnov Yu. N., Polzuchest elementov konstruktsii, Nauka, M., 1966

[6] Sosnin O. V., “Ob anizotropnoi polzuchesti materialov”, Zhurn. prikl. mekhaniki i tekhn. fiziki, 1965, no. 6, 99–104

[7] Pipkin A. C., “Constraints in linearly elastic materials”, J. Elast., 6:2 (1976), 179–193 | DOI | MR | Zbl

[8] Podio-Guidugli P., Vianello M., “Internal constraints and linear constitutive relations for transversely isotropic materials”, Rend. Lincei. Mat. Appl. Ser. 9, 2:3 (1991), 241–248 | MR | Zbl

[9] Felippa C. A., Oñate E., “Stress, strain and energy splittings for anisotropic elastic solids under volumetric constraints”, Comput. Struct., 81:13 (2003), 1343–1357 | DOI

[10] Felippa C. A., Oñate E., “Volumetric constraint models for anisotropic elastic solids”, Trans. ASME. J. Appl. Mech., 71:5 (2004), 731–734 | DOI | Zbl

[11] Kowalczyk-Gajewska K., Ostrowska-Maciejewska J., “The influence of internal restrictions on the elastic properties of anisotropic materials”, Arch. Mech., 56:3 (2004), 205–232 | MR | Zbl

[12] Gantmakher F. R., Teoriya matrits, Gostekhizdat, M., 1954

[13] Ostrosablin N. I., “Lineinye invariantnye neprivodimye razlozheniya tenzora chetvertogo ranga modulei uprugosti”, Dinamika sploshnoi sredy, 120, 2002, 149–160 | MR | Zbl

[14] Ostrosablin N. I., “Kanonicheskie moduli i obschee reshenie uravnenii dvumernoi staticheskoi zadachi anizotropnoi uprugosti”, Prikl. mekhanika i tekhn. fizika, 51:3 (2010), 94–106 | MR | Zbl