Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2014_17_1_a10, author = {V. V. Ostapenko}, title = {Conservation laws of shallow water theory and the {Galilean} relativity principle}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {99--113}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a10/} }
TY - JOUR AU - V. V. Ostapenko TI - Conservation laws of shallow water theory and the Galilean relativity principle JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2014 SP - 99 EP - 113 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a10/ LA - ru ID - SJIM_2014_17_1_a10 ER -
V. V. Ostapenko. Conservation laws of shallow water theory and the Galilean relativity principle. Sibirskij žurnal industrialʹnoj matematiki, Tome 17 (2014) no. 1, pp. 99-113. http://geodesic.mathdoc.fr/item/SJIM_2014_17_1_a10/
[1] Lax P. D., Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, Soc. Industr. Appl. Math., Philadelphia, 1972 | MR | Zbl
[2] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR
[3] Ostapenko V. V., Giperbolicheskie sistemy zakonov sokhraneniya i ikh prilozhenie k teorii melkoi vody, Izd-vo NGU, Novosibirsk, 2004
[4] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1988
[5] Stoker Dzh. Dzh., Volny na vode. Matematicheskaya teoriya i prilozheniya, Izd-vo inostr. lit., M., 1959
[6] Friedrichs K. O., “On the derivation of shallow water treory”, Comm. Appl. Math., 1 (1948), 109–134 | DOI | MR | Zbl
[7] Godunov S. K., “Interesnyi klass kvazilineinykh sistem”, Dokl. AN SSSR, 139:3 (1961), 521–523 | MR | Zbl
[8] Shugrin S. M., “Obodnom klasse kvazilineinykh sistem”, Dinamika sploshnoi sredy, 2, 1969, 145–148
[9] Friedrichs K. O., Lax P. D., “Systems of conservation equation with convex extension”, Proc. Nat. Acad. Sci. USA, 68:8 (1971), 1686–1688 | DOI | MR | Zbl
[10] Dressler R. F., “Comparison of theories and experiments for the hydraulic dam-break wave”, Intern. Assoc. Sci. Hydrology, 3:38 (1954), 319–328
[11] Stansby P. K., Chegini A., Barnes T. C., “The initial stages of dam-break flow”, J. Fluid Mech., 374 (1998), 407–424 | DOI | MR | Zbl
[12] Bukreev V. I., Gusev A. V., Malysheva A. A., Malysheva I. A., “Eksperimentalnaya proverka gazogidravlicheskoi analogii na primere zadachi o razrushenii plotiny”, Izv. RAN. MZhG, 2004, no. 5, 143–152 | Zbl
[13] Ostapenko V. V., “Techeniya, voznikayuschie pri razrushenii plotiny nad stupenkoi dna”, Prikl. mekhanika i tekhn. fizika, 44:4 (2003), 51–63 | MR | Zbl
[14] Ostapenko V. V., “Techeniya, voznikayuschie pri razrushenii plotiny nad ustupom dna”, Prikl. mekhanika i tekhn. fizika, 44:6 (2003), 107–122 | MR | Zbl
[15] Ostapenko V. V., “Techeniya, voznikayuschie pri razrushenii plotiny na skachke ploschadi secheniya pryamougolnogo kanala”, Prikl. mekhanika i tekhn. fizika, 53:5 (2012), 55–66 | MR
[16] Bukreev V. I., Gusev A. V., Ostapenko V. V., “Raspad razryva svobodnoi poverkhnosti zhidkosti nad ustupom dna kanala”, Izv. RAN. MZhG, 2003, no. 6, 72–83 | Zbl
[17] Bukreev V. I., Gusev A. V., Ostapenko V. V., “Volny v otkrytom kanale, obrazuyuschiesya pri udalenii schita pered nerovnym dnom tipa shelfa”, Vodnye resursy, 31:5 (2004), 1–6
[18] Kovyrkina O. A., Ostapenko V. V., “Sravnenie teorii i chislennogo eksperimenta v zadache o razrushenii plotiny na skachke ploschadi secheniya pryamougolnogo kanala”, Izv. RAN. MZhG, 2013, no. 3, 12–23 | Zbl
[19] Teshukov V. M., “Gazodinamicheskaya analogiya dlya vikhrevykh techenii so svobodnoi granitsei”, Prikl. mekhanika i tekhn. fizika, 48:3 (2007), 8–15 | MR | Zbl
[20] Richard G. L., Gavrilyuk S. L., “A new model of roll waves: comparison with Brock's experiments”, J. Fluid Mech., 698 (2012), 374–405 | DOI | MR | Zbl
[21] Brock R. R., “Development of roll-wave trains in open channels”, J. Hydraul. Div. ASCE, 95 (1969), 1401–1427
[22] Brock R. R., “Periodic permanent roll-waves”, J. Hydraul. Div. ASCE, 96 (1969), 2565–2580