Application of the finite element method for inverse problems of anomalous diffusion
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 4, pp. 29-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider some aspects of the application of the finite element method for the numerical solution of initial boundary value problems for a multidimensional time-fractional diffusion equation. A survey of the existing results is made, efficient algorithms for constructing meshes are discussed, and a number of numerical examples is exposed.
Keywords: finite element method, fractional derivative, automatic mesh generation.
Mots-clés : anomalous diffusion
@article{SJIM_2013_16_4_a2,
     author = {A. N. Bondarenko and D. S. Ivashchenko},
     title = {Application of the finite element method for inverse problems of anomalous diffusion},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {29--37},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_4_a2/}
}
TY  - JOUR
AU  - A. N. Bondarenko
AU  - D. S. Ivashchenko
TI  - Application of the finite element method for inverse problems of anomalous diffusion
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 29
EP  - 37
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_4_a2/
LA  - ru
ID  - SJIM_2013_16_4_a2
ER  - 
%0 Journal Article
%A A. N. Bondarenko
%A D. S. Ivashchenko
%T Application of the finite element method for inverse problems of anomalous diffusion
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 29-37
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_4_a2/
%G ru
%F SJIM_2013_16_4_a2
A. N. Bondarenko; D. S. Ivashchenko. Application of the finite element method for inverse problems of anomalous diffusion. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 4, pp. 29-37. http://geodesic.mathdoc.fr/item/SJIM_2013_16_4_a2/

[1] Metzler R., Klafter J., “The random walk's guide to anomalous diffusion: A fractional dynamics approach”, Phys. Rep., 339 (2000), 1–77 | DOI | MR | Zbl

[2] Bondarenko A. N., “Obratnye zadachi rasseyaniya dlya uravneniya tipa Lipmana–Shvingera”, Sib. zhurn. industr. matematiki, 6:3(15) (2003), 18–33 | MR | Zbl

[3] Bondarenko A. N., “Tekhnika feinmanovskikh diagramm dlya uravneniya Lipmana–Shvingera s singulyarnym potentsialom”, Sib. zhurn. industr. matematiki, 6:4(16) (2003), 3–10 | MR | Zbl

[4] Zenkevich O., Morgan K., Konechnye elementy i approksimatsiya, Mir, M., 1986 | MR

[5] Mitchell E., Ueit R., Metod konechnykh elementov dlya uravnenii s chastnymi proizvodnymi, Mir, M., 1981 | MR

[6] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR

[7] Ciesielski M., Leszczynski J., “Numerical simulations of anomalous diffusion”, Proc. Conf. Computer methods in mechanics (CMM-2003)

[8] Sun H. G., Chenb W., Szea K. Y., A semi-analytical finite element method for a class of time-fractional diffusion equations, arXiv: 1109.0641

[9] Persson P.-O., Strang G., “A simple mesh generator in Matlab”, SIAM Review, 46 (2004), 329–345 | DOI | MR | Zbl

[10] Persson P.-O., Mesh generation for implicit geometries, http://persson.berkeley.edu/thesis/persson-thesis.pdf

[11] Alberty J., Carstensen C., Funken S. A., “Remarks around 50 lines of Matlab: short finite element implementation”, Numer. Algorithms, 20 (1999), 117–137 | DOI | MR | Zbl