Determination of a terrestrial heat flow from temperature measurements in bottom sediments
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 3, pp. 61-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the determination of a terrestrial heat flow from temperature measurements in bottom sediments. The problem is divided into two subproblems: first we solve the one-dimensional inverse problem of estimating the thermal conductivity $\lambda$, and second we compute the heat flow value by solving the direct stationary problem, based on the already-found value of $\lambda$. We develop a sweep method for solving the direct problem which differs form the standard one. An optimization approach is used for solving the inverse problem; explicit formulas are obtained for computing the gradient of the residual functional. We analyze factors causing errors in estimating the heat flow. We show that the main contribution to the errors is given by the presence of harmonics with periods exceeding the monitoring time interval in the temperature curves. We show that if the parameters of the harmonics are known then one can calculate corrections for the found value of the heat flow. The results were applied to the data of temperature measurements carried out at the bottom of Lake Teletskoye from June 2008 to September 2010. For finding long-period harmonics, we made use of meteorological data about bottom water temperature from 1968 to 2011. This allowed us to estimate the value of the heat flow through the bottom of Lake Teletskoye as well as the thermal diffusivity in the upper layer of the sediments.
Keywords: heat flow, thermal conductivity, thermal diffusivity, inverse problem of heat conduction, Lake Teletskoye.
@article{SJIM_2013_16_3_a5,
     author = {A. A. Duchkov and A. L. Karchevskii},
     title = {Determination of a terrestrial heat flow from temperature measurements in bottom sediments},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {61--85},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a5/}
}
TY  - JOUR
AU  - A. A. Duchkov
AU  - A. L. Karchevskii
TI  - Determination of a terrestrial heat flow from temperature measurements in bottom sediments
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 61
EP  - 85
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a5/
LA  - ru
ID  - SJIM_2013_16_3_a5
ER  - 
%0 Journal Article
%A A. A. Duchkov
%A A. L. Karchevskii
%T Determination of a terrestrial heat flow from temperature measurements in bottom sediments
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 61-85
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a5/
%G ru
%F SJIM_2013_16_3_a5
A. A. Duchkov; A. L. Karchevskii. Determination of a terrestrial heat flow from temperature measurements in bottom sediments. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 3, pp. 61-85. http://geodesic.mathdoc.fr/item/SJIM_2013_16_3_a5/

[1] A. D. Duchkov i dr., Teplovoe pole nedr Sibiri, Nauka, Novosibirsk, 1987

[2] Wright J. A., Louden K. E., Handbook of Seafloor Heat Flow, CRC Press, Florida, 1989

[3] Hamamoto H., Yamano M., Goto S., “Heat flow measurement in shallow seas through longterm temperature monitoring”, Geophys. Res. Lett., 32 (2005), L21311 | DOI

[4] Carslaw H. S., Jaeger J. C., Conduction of Heat in Solids, Oxford Univ. Press, N. Y., 1986 | MR | Zbl

[5] Kabanikhin S. I., Khasanov A., Penenko A. V., “Metod gradientnogo tipa dlya resheniya obratnoi koeffitsientnoi zadachi teploprovodnosti”, Sib. zhurn. vychisl. matematiki, 11:1 (2008), 41–54 | MR | Zbl

[6] Penenko A. V., “Diskretno-analiticheskie skhemy dlya resheniya obratnoi koeffitsientnoi zadachi teploprovodnosti sloistykh sred gradientnymi metodami”, Sib. zhurn. vychisl. matematiki, 15:4 (2012), 393–408

[7] Voevodin A. F., Grankina T. B., “Matematicheskoe modelirovanie ledotermicheskogo rezhima presnykh i solenykh vodoemov”, Sib. zhurn. industr. matematiki, 15:2(50) (2012), 56–63

[8] Nazarov L. A., Nazarova L. A., Karchevskii A. L., Panov A. V., “Otsenka napryazhenii deformatsionnykh svoistv porodnykh massivov na osnove resheniya obratnoi zadachi po dannym izmerenii smeschenii na svobodnykh granitsakh”, Sib. zhurn. industr. matematiki, 15:4(52) (2012), 102–109

[9] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Ekstremalnye metody resheniya nekorrektnykh zadach, Nauka, M., 1988 | MR | Zbl

[10] Gelfand I. M., Lokutsievskii O. V., “Metod «progonki» dlya resheniya raznostnykh uravnenii”: Godunov S. K., Ryabenkii V. S., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1962, 283–309

[11] Dmitriev V. I., “Obschii metod rascheta elektromagnitnogo polya v sloistoi srede”, Vychislitelnye metody i programmirovanie, 10 (1968), 55–65

[12] Karchevskii A. L., “Metod chislennogo resheniya sistemy uprugosti dlya gorizontalno-sloistoi anizotropnoi sredy”, Geologiya i geofizika, 46:3 (2005), 339–351

[13] Karchevskii A. L., “Pryamaya dinamicheskaya zadacha seismiki dlya gorizontalno-sloistykh sred”, Sib. elektronnye mat. izvestiya, 2 (2005), 23–61 http://semr.math.nsc.ru/v2/p23-61.pdf | MR | Zbl

[14] Karchevskii A. L., “Analiticheskoe reshenie uravnenii Maksvella v chastotnoi oblasti dlya gorizontalno sloistykh anizotropnykh sred”, Geologiya i geofizika, 48:8 (2007), 889–898 | MR

[15] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR

[16] Duchkov A. D., Kazantsev S. A., Klerkx J., Duchkov A. A., “Heat flow and temperature field in sediments of Lake Teletskoye”, Ann. Sci. Geologiques, 105 (2001), 283–301

[17] Duchkov A. D., Kazantsev S. A., “Anomalnye izmeneniya temperaturnogo rezhima dna (vody i osadkov) Teletskogo ozera v osenne-zimnii period”, Geologiya i geofizika, 48 (2007), 1366–1370

[18] Kamke E., Differentialgleichungen Lösungsmenthoden und Lösungen, Verbesserte Auflage, Leipzig, 1959 | Zbl