DELAUNAY: a~technological environment for grid generation
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 2, pp. 83-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the concept of technological environment for multidimensional grid generation for solving problems of mathematical modeling in computation domains with complicated configuration of piecewise smooth boundaries including direct and inverse interdisciplinary statements described by systems of differential and/or integral equations. In general, the computation grid domain that is constructed consists of subdomains in each of which grids can be of different types (for example, structured or nonstructured) and discretization at the inner boundaries can be consistent or nonconsistent. The methodology of such quasistructured grids assumes the possibility of using various algorithms and codes in subdomains as well as the plurality of the formats of grid data structure and their convertation. The proposed technologies include control of the grid quality, generation of dynamical grids adapted to the singularities of the input geometric data structure, and multigrid approaches, local refinements and account taken of the a priori and/or a posteriori information about the solution. Scalable parallelization is supported by a balanced decomposition of the grid domain.
Keywords: multidimensional boundary value problems, grid computation domain, adaptive quasi-structured grids, grid generation method, grid data structures, scalable parallelezation.
@article{SJIM_2013_16_2_a7,
     author = {V. P. Il'in},
     title = {DELAUNAY: a~technological environment for grid generation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {83--97},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a7/}
}
TY  - JOUR
AU  - V. P. Il'in
TI  - DELAUNAY: a~technological environment for grid generation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 83
EP  - 97
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a7/
LA  - ru
ID  - SJIM_2013_16_2_a7
ER  - 
%0 Journal Article
%A V. P. Il'in
%T DELAUNAY: a~technological environment for grid generation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 83-97
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a7/
%G ru
%F SJIM_2013_16_2_a7
V. P. Il'in. DELAUNAY: a~technological environment for grid generation. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 2, pp. 83-97. http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a7/

[1] Glasser A. G. i dr., Postroenie raznostnykh setok s pomoschyu uravnenii Beltrami i diffuzii, Nauka, Novosibirsk, 2006

[2] Godunov S. K., Romenskii E. I., Chumakov G. A., “Postroenie setok v slozhnykh oblastyakh s pomoschyu kvazikonformnykh otobrazhenii”, Tr. IM SO RAN, 18, 1990, 75–84 | MR

[3] Vasilevskii Yu. V., Danilov A. A., “Vzaimodeistvie s SAPR pri postroenii raschetnykh setok v slozhnykh oblastyakh”, Tr. Mat. ob-va im. N. I. Lobachevskogo, 39, Kazan, 2009, 5–12

[4] Garanzha V. A., “Variational principles in grid generation and geometric modelling”, Numer. Linear Algebra, 11:5–6 (2003), 535–563 | MR

[5] Bronina T. N., Gasimova N. A., Ushakova O. V., “Algoritmy postroeniya trekhmernykh strukturirovannykh setok”, Zhurn. vychisl. matematiki i mat. fiziki, 43:6 (2003), 875–883 | MR | Zbl

[6] Ilin V. P., “Geometricheskoe i funktsionalnoe modelirovanie v zadachakh matematicheskoi fiziki”, Vychisl. tekhnologii, 6, ch. 2 (2001), 315–321

[7] Ilin V. P., Pavlov M. V., Sveshnikov V. M., “Reshenie dvumernykh kraevykh zadach na kvazistrukturirovannykh setkakh”, Vychisl. tekhnologii, 6, ch. 2 (2001), 168–175

[8] Il'in V. P., Pavlov M. V., Volkov A. P., “On the finite volume approach to the 3-D quasistructured grids”, Bull. Novosibirsk Comput. Center. Numer. Analysis, 13, Novosibirsk, 2005, 21–31

[9] Fritzke B., “Growing Cell Structuring – a self-organizing networks for unsupervised learning”, Neural Networks, 7:9 (1994), 1441–1460 | DOI

[10] Vlasov V. I., Kraevye zadachi v oblastyakh s krivolineinoi granitsei, izd. VTs AN SSSR, M., 1987 | MR

[11] Ivanenko S. A., “O suschestvovanii uravnenii dlya opisaniya klassov nevyrozhdennykh krivolineinykh koordinat v proizvolnoi oblasti”, Zhurn. vychisl. matematiki i mat. fiziki, 42:1 (2002), 47–52 | MR | Zbl

[12] Garipov R. M., “Nailuchshie v srednem kvazikonformnye otobrazheniya”, Sib. zhurn. industr. matematiki, 14:1(45) (2011), 70–82 | Zbl

[13] International Meshing Roundtable, URL: http://www.imr.sandia.gov/18imr

[14] Trends in Unstructured Mesh Generation, Internat. J. Numer. Math. Engrg., 58, no. 2, Special issue, 2003

[15] Ilin V. P., “Ekzaproblemy matematicheskogo modelirovaniya”, Vestn. YuUrGU. Ser. Mat. modelirovanie i programmirovanie, 6:35 (2010), 28–39

[16] Golubeva L. A., Ilin V. P., Kozyrev A. N., “O programmnykh tekhnologiyakh v geometricheskikh aspektakh matematicheskogo modelirovaniya”, Vestn. NGU. Cer. Informatsionnye tekhnologii, 10:2 (2012), 25–33

[17] Ilin V. P., “O chislennom reshenii pryamykh i obratnykh zadach elektromagnitnoi georazvedki”, Sib. zhurn. vychisl. matematiki, 6:4 (2003), 381–394 | Zbl

[18] Ilin V. P., Chislennyi analiz, Ch. 1, izd. IVMiMG SO RAN, Novosibirsk, 2004

[19] Ilin V. P., Metody i tekhnologii konechnykh elementov, izd. IVMiMG SO RAN, Novosibirsk, 2007

[20] Ilin V. P., Metody konechnykh raznostei i konechnykh ob'emov dlya ellipticheskikh uravnenii, izd. IVM SO RAN, Novosibirsk, 2000

[21] Ilin V. P., “Parallelnye metody i tekhnologii dekompozitsii oblastei”, Vestn. YuUrGU. Ser. Vychisl. matematika i informatika, 2012, no. 46(305), 31–44

[22] Chesbro G., Otkrytye innovatsii, Pokolenie, M., 2007