Differential properties of a~generalized solution to a~hyperbolic system of first-order differential equations
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 2, pp. 26-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study some questions of the qualitative theory of solutions to differential equations. A Cauchy problem is considered for a hyperbolic system of two first-order differential equations. The right-hand sides of these equations contain discontinuous functions. A generalized solution is defined as a continuous solution to the corresponding system of integral equations. We prove the existence and uniqueness of a generalized solution and study the differential properties of the obtained solution. It is in particular established that its first-order partial derivatives are unbounded near certain parts of the characteristic lines. We observe that this property contradicts a common approach of investigation which uses the reduction of a system of two first-order equations to a single second-order equation.
Keywords: hyperbolic equations, discontinuous functions, generalized solutions, differential properties.
@article{SJIM_2013_16_2_a2,
     author = {D. S. Anikonov and S. G. Kazantsev and D. S. Konovalova},
     title = {Differential properties of a~generalized solution to a~hyperbolic system of first-order differential equations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {26--39},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a2/}
}
TY  - JOUR
AU  - D. S. Anikonov
AU  - S. G. Kazantsev
AU  - D. S. Konovalova
TI  - Differential properties of a~generalized solution to a~hyperbolic system of first-order differential equations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 26
EP  - 39
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a2/
LA  - ru
ID  - SJIM_2013_16_2_a2
ER  - 
%0 Journal Article
%A D. S. Anikonov
%A S. G. Kazantsev
%A D. S. Konovalova
%T Differential properties of a~generalized solution to a~hyperbolic system of first-order differential equations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 26-39
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a2/
%G ru
%F SJIM_2013_16_2_a2
D. S. Anikonov; S. G. Kazantsev; D. S. Konovalova. Differential properties of a~generalized solution to a~hyperbolic system of first-order differential equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 2, pp. 26-39. http://geodesic.mathdoc.fr/item/SJIM_2013_16_2_a2/

[1] Petrovskii I. G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, Gostekhizdat, M., 1950

[2] Germogenova T. A., Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR | Zbl

[3] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000

[4] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[5] Konovalova D. S., “Nekotorye svoistva reshenii uravneniya perenosa”, Differents. uravneniya, 42:5 (2006), 684–689 | MR | Zbl

[6] Konovalova D. S., Prokhorov I. V., “Chislennaya realizatsiya algoritma poetapnoi rekonstruktsii dlya zadachi rentgenovskoi tomografii”, Sib. zhurn. industr. matematiki, 11:4(36) (2008), 61–65 | MR | Zbl

[7] Konovalova D. S., “Poetapnoe reshenie obratnoi zadachi dlya uravneniya perenosa primenitelno k zadache tomografii”, Zhurn. vychisl. matematiki i mat. fiziki, 49:1 (2009), 189–199 | MR | Zbl

[8] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1976

[9] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR

[10] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977