Constructing the compressed description of dataset by the function of rival similarity
Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 1, pp. 29-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

We argue that the general aim of data mining consists in constructing some simplified compressed description of information. The Function of rival similarity (FRiS-function) is proposed as a new ternary similarity measure between objects instead of a binary one. Quantitative estimation of the compactness of datasets, basing on FRiS-function, allows constructing new more effective compressing algorithms of data mining. Some examples are described of the algorithms testing on real and model tasks.
Keywords: data mining, function of rival similarity, pattern recognition, objects censoring, feature selection.
@article{SJIM_2013_16_1_a3,
     author = {N. G. Zagoruiko and I. A. Borisova and O. A. Kutnenko and V. V. Dyubanov},
     title = {Constructing the compressed description of dataset by the function of rival similarity},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {29--41},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a3/}
}
TY  - JOUR
AU  - N. G. Zagoruiko
AU  - I. A. Borisova
AU  - O. A. Kutnenko
AU  - V. V. Dyubanov
TI  - Constructing the compressed description of dataset by the function of rival similarity
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2013
SP  - 29
EP  - 41
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a3/
LA  - ru
ID  - SJIM_2013_16_1_a3
ER  - 
%0 Journal Article
%A N. G. Zagoruiko
%A I. A. Borisova
%A O. A. Kutnenko
%A V. V. Dyubanov
%T Constructing the compressed description of dataset by the function of rival similarity
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2013
%P 29-41
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a3/
%G ru
%F SJIM_2013_16_1_a3
N. G. Zagoruiko; I. A. Borisova; O. A. Kutnenko; V. V. Dyubanov. Constructing the compressed description of dataset by the function of rival similarity. Sibirskij žurnal industrialʹnoj matematiki, Tome 16 (2013) no. 1, pp. 29-41. http://geodesic.mathdoc.fr/item/SJIM_2013_16_1_a3/

[1] Arkadev A. G., Braverman E. M., Obuchenie mashiny klassifikatsii ob'ektov, Nauka, M., 1971

[2] Vorontsov K. V., Koloskov A. O., “Profili kompaktnosti i vydelenie opornykh ob'ektov v metricheskikh algoritmakh klassifikatsii”, Iskusstv. intellekt, 2006, no. 2, 30–33

[3] Shlezinger M. I., “O samoproizvolnom razdelenii obrazov”, Chitayuschie avtomaty i raspoznavanie obrazov, Nauk. dumka, Kiev, 1965, 46–61

[4] Zagoruiko N. G., Borisova I. A., Dyubanov V. V., Kutnenko O. A., “Methods of recognition based on the function of rival similarity”, Pattern Recognition and Image Analisys, 18:1 (2008), 1–6 | DOI

[5] Kira K., Rendell L., “The Feature selection problem: Traditional methods and a new algorithm”, Proc. 10 Conf. “Artificial Intelligence” (AAAI-92), AAAI Press, Menlo Park, 1992, 129–134

[6] Rousseeuw P. J., “Silhouettes: A graphical aid to the interpretation and validation of cluster analysis”, J. Comput. Appl. Math., 20 (1987), 53–65 | DOI | Zbl

[7] Zagoruiko N. G., Kutnenko O. A., “Kolichestvennaya mera kompaktnosti obrazov i metod ee povysheniya”, Sb. dokl. 9 Mezhdunar. konf. “Intellektualizatsiya obrabotki informatsii” (g. Budva, 16–22 sentyabrya 2012 g.), Torus Press, M., 2012, 29–32

[8] Borisova I. A., Dyubanov V. V., Zagoruiko N. G., Kutnenko O. A., “Skhodstvo i kompaktnost”, Tr. 14 Vseros. konf. “Matematicheskie metody raspoznavaniya obrazov”, M., 2009, 89–92

[9] Borisova I. A., “Algoritm taksonomii FRiS-Tax”, Nauchnyi vestnik NGTU (Novosibirsk), 2007, no. 3, 3–12

[10] Zagoruiko N. G., Prikladnye metody analiza dannykh i znanii, Izd-vo In-ta matematiki, Novosibirsk, 1999 | Zbl

[11] MacQueen J., “Some methods for classification and analysis of multivariate observations”, Proc. 5 Berkley Symp. Math. Statistic and Probability, v. 1, Univ. Press, California, 1967, 281–297 | MR | Zbl

[12] Borisova I. A., “Calculation of FRiS-function over mixed dataset in the task of generalized classification”, Proc. 3 Internat. Conf. Inductive Modeling, ICIM' 2010, Yevpatoria, 2010, 44–50

[13] Borisova I. A., Zagoruiko N. G., “Algoritm FRiS-TDR dlya resheniya obobschennoi zadachi taksonomii i raspoznavaniya”, Materialy Vseros. konf. ZONT-2009, v. 1, Novosibirsk, 2009, 93–102

[14] Zagoruiko N. G., Kutnenko O. A., “Algoritm GRAD dlya vybora priznakov”, Tr. 8 Mezhdunar. konf. “Primenenie mnogomernogo statisticheskogo analiza v ekonomike i otsenke kachestva”, Izd. MESI, M., 2006, 81–89

[15] Pudil P., Novicova J., Kittler J., “Floating search methods in feature selection”, Pattern Recognition Lett., 15:11 (1994), 1119–1125 | DOI

[16] Merill T., Green O. M., “On the effectiveness of receptions in recognition systems”, IEEE Trans. Inform. Theory, IT-9 (1963), 11–17 | DOI

[17] Avtomaticheskoe raspoznavanie obrazov, izd. KVAIU, Kiev, 1963

[18] Zagoruiko N. G., Borisova I. A., Dyubanov V. V., Kutnenko O. A., “Attribute selection through decision rule construction (algorithm FRiS-GRAD)”, Proc. 9 Internat. Conf. Pattern Recognition and Image Analysis: New Information Technologies, v. 2, Nizhniy Novgorod, 2008, 335–338

[19] Jeffery I., Higgins D., Culhane A., “Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data”, BMC Bioinformatics, 7 (2006), 359–374 | DOI