A projection method for a~third-order operator differential equation with a~nonlinear monotone operator
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 4, pp. 64-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Galerkin method for a third-order operator-differential equation with the main self-adjoint operator $A$ and the subordinate nonlinear monotone operator $K$ in a separable Hilbert space. The existence and uniqueness of a strong solution to the original problem are proved. Convergence estimates for the Galerkin method are obtained.
Keywords: operator-differential equation, monotone operator, strong solution, Galerkin method.
Mots-clés : convergence rate
@article{SJIM_2012_15_4_a5,
     author = {P. V. Vinogradova and A. M. Samusenko},
     title = {A projection method for a~third-order operator differential equation with a~nonlinear monotone operator},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {64--70},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_4_a5/}
}
TY  - JOUR
AU  - P. V. Vinogradova
AU  - A. M. Samusenko
TI  - A projection method for a~third-order operator differential equation with a~nonlinear monotone operator
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 64
EP  - 70
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_4_a5/
LA  - ru
ID  - SJIM_2012_15_4_a5
ER  - 
%0 Journal Article
%A P. V. Vinogradova
%A A. M. Samusenko
%T A projection method for a~third-order operator differential equation with a~nonlinear monotone operator
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 64-70
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_4_a5/
%G ru
%F SJIM_2012_15_4_a5
P. V. Vinogradova; A. M. Samusenko. A projection method for a~third-order operator differential equation with a~nonlinear monotone operator. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 4, pp. 64-70. http://geodesic.mathdoc.fr/item/SJIM_2012_15_4_a5/

[1] Barbu V., Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer Monographs in Mathematics, Springer Verl., N.Y., 2010 | DOI | MR

[2] Vinogradova P. V., “Metod Galërkina dlya nestatsionarnogo uravneniya s monotonnym operatorom”, Differents. uravneniya, 46:7 (2010), 955–965 | MR | Zbl

[3] Fitzgibbon W. E., “Time dependent second order differential equations in Hilbert space”, Funkcial. Ekvac., 19 (1976), 27–34 | MR | Zbl

[4] Chidume C. E., Zegeye H., “Approximation methods for nonlinear operator equations”, Proc. Amer. Math. Soc., 131:8 (2002), 2467–2478 | DOI | MR

[5] Emmrich E., Šiška D., “Full discretisation of second-order nonlinear evolution equations: strong convergence and applications”, Comput. Methods Appl. Math., 11:4 (2011), 441–459 | MR

[6] Gaevskii Kh., Grëger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, M., 1978

[7] Chen M., Chen Z., Chen G., Approximate Solutions of Operator Equations, Wold Sci. Publ., Singapore, 1997 | MR

[8] Vasilevskii K. V., “Granichnaya zadacha dlya dvuchlennogo differentsialno-operatornogo uravneniya tretego poryadka s peremennymi oblastyami opredeleniya neogranichennykh operatorov”, Vestn. BGU. Ser. 1, 2010, no. 3, 110–114 | MR

[9] Aliev A. R., “O razreshimosti nachalno-kraevykh zadach dlya odnogo klassa operativno-differentsialnykh uravnenii tretego poryadka”, Mat. zametki, 90:3 (2011), 323–339 | DOI | MR

[10] Mamedov A. M., “O kraevoi zadache dlya odnogo klassa operatorno-differentsialnykh uravnenii tretego poryadka”, Mat. zametki, 87:4 (2010), 632–635 | DOI | MR | Zbl

[11] Kalantarov V., Tiryaki A., “On the stability results for third order differential-operator equations”, Turkish J. Math., 21 (1997), 179–186 | MR | Zbl

[12] Varlamov V. V., “K voprosu o rasprostranenii nestatsionarnykh akusticheskikh voln v relaksiruyuschei srede”, Zhurn. vychisl. matematiki i mat. fiziki, 30:2 (1990), 328–332 | MR | Zbl

[13] Faranchi F., Straughan B., “Continuous dependence on the relaxation time and modeling, and unbounded growth, in theories of heat conduction with finite propagation speeds”, J. Math. Anal. Appl., 185 (1994), 726–746 | DOI | MR

[14] Quintanilla R., “Spatial bounds and growth estimates for the heat equation with three relaxation times”, Math. Methods Appl. Sci., 20 (1997), 1335–1344 | 3.0.CO;2-9 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[15] Dubinskii Yu. A., “O nekotorykh differentsialno-operatornykh uravneniyakh proizvolnogo poryadka”, Mat. sb., 90(132):1 (1973), 3–22 | MR | Zbl

[16] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972 | MR

[17] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR