The uniqueness of an oblique factor structure. An upgraded oblimax method
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 2, pp. 64-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We formulate and prove theorems that solve the problem of the nonuniqueness of an oblique factor structure and allowing to uniquely choose a sequence of pairs of axes of rotation that provide a maximum value for the oblimax criterion. We develop and propose an upgraded algorithm for the realization of oblimax oblique-angled rotation method including a theoretical substantiation for its use.
Keywords: factor structure, rotation problem, oblimax-criterion
Mots-clés : varimax-criterion.
@article{SJIM_2012_15_2_a6,
     author = {V. V. Goltyapin},
     title = {The uniqueness of an oblique factor structure. {An} upgraded oblimax method},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {64--74},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a6/}
}
TY  - JOUR
AU  - V. V. Goltyapin
TI  - The uniqueness of an oblique factor structure. An upgraded oblimax method
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 64
EP  - 74
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a6/
LA  - ru
ID  - SJIM_2012_15_2_a6
ER  - 
%0 Journal Article
%A V. V. Goltyapin
%T The uniqueness of an oblique factor structure. An upgraded oblimax method
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 64-74
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a6/
%G ru
%F SJIM_2012_15_2_a6
V. V. Goltyapin. The uniqueness of an oblique factor structure. An upgraded oblimax method. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 2, pp. 64-74. http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a6/

[1] Iberla K., Faktornyi analiz, Statistika, M., 1989

[2] Kharman G., Sovremennyi faktornyi analiz, Statistika, M., 1972

[3] Goltyapin V. V., “Ispolzovanie psevdoobratnoi matritsy faktornogo otobrazheniya v izmerenii faktorov”, Sib. zhurn. industr. matematiki, 14:3(47) (2011), 20–30

[4] Kaiser H. F., “The varimax criterion for analytic rotation in factor analysis”, Psyhometrika, 23 (1958), 187–200 | DOI | Zbl

[5] Saunders D., “The rationale for an “oblimax” method of transformation in factor analysis”, Psyhometrika, 26 (1961), 317–324 | DOI

[6] Goltyapin V. V., Shovin V. A., “Kosougolnaya faktornaya model arterialnoi gipertenzii pervoi stadii”, Vestn. Omsk. gos. un-ta, 2010, no. 4, 120–128

[7] Kaiser H. F., “Three comments on oblimax”, Psyhometrika, 38 (1973), 609–612 | DOI

[8] Goltyapin V. V., “Vychislitelnye aspekty metoda minimalnykh ostatkov pri razreshenii varianta Kheivuda”, Sib. zhurn. industr. matematiki, 8:3(23) (2005), 24–31 | MR | Zbl