Inverse optimal control problems in creep theory
Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 2, pp. 33-42

Voir la notice de l'article provenant de la source Math-Net.Ru

We formulate inverse problems of the theory of quasi-static creep in the form of a variational principle and optimal control with constraints on the displacements and stresses and give necessary optimality conditions. In solving specific examples, we find a continuous function of optimal load that depends on two parameters. We construct and numerically implement the method for determining the parameters from given conditions of the problem.
Keywords: inverse creep problem, damagedness, multiobjective optimization problem, optimal control.
Mots-clés : variational principles
@article{SJIM_2012_15_2_a3,
     author = {K. S. Bormotin},
     title = {Inverse optimal control problems in creep theory},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {33--42},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a3/}
}
TY  - JOUR
AU  - K. S. Bormotin
TI  - Inverse optimal control problems in creep theory
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2012
SP  - 33
EP  - 42
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a3/
LA  - ru
ID  - SJIM_2012_15_2_a3
ER  - 
%0 Journal Article
%A K. S. Bormotin
%T Inverse optimal control problems in creep theory
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2012
%P 33-42
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a3/
%G ru
%F SJIM_2012_15_2_a3
K. S. Bormotin. Inverse optimal control problems in creep theory. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 2, pp. 33-42. http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a3/