Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2012_15_2_a11, author = {S. P. Sidorov}, title = {On the error of optimal interpolation by linear shape-preserving algorithms}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {119--127}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a11/} }
TY - JOUR AU - S. P. Sidorov TI - On the error of optimal interpolation by linear shape-preserving algorithms JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2012 SP - 119 EP - 127 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a11/ LA - ru ID - SJIM_2012_15_2_a11 ER -
S. P. Sidorov. On the error of optimal interpolation by linear shape-preserving algorithms. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 2, pp. 119-127. http://geodesic.mathdoc.fr/item/SJIM_2012_15_2_a11/
[1] Gal S. G., Shape-Preserving Approximation by Real and Complex Polynomials, Springer-Verl., Boston, 2008 | MR
[2] Leviatan D., “Shape-preserving approximation by polynomials”, J. Comput. Appl. Math., 121 (2000), 73–94 | DOI | MR | Zbl
[3] Micchelli C. A., Rivlin T. J., “Lectures on optimal recovery”, Lectures Notes in Math., 1129, 1985, 21–93 | DOI | MR
[4] Traub J. F., Wozniakowski H., A General Theory of Optimal Algorithms, Acad. Press, N.Y., 1980 | MR
[5] Muñoz-Delgado F. J., Ramírez-González V., “Almost convexity and quantitative Korovkin type results”, Appl. Math. Lett., 11:4 (1998), 105–108 | DOI | MR | Zbl
[6] Muñoz-Delgado F. J., Ramírez-González V., Cárdenas-Morales D., “Qualitative Korovkin-type results on conservative approximation”, J. Approx. Theory, 94 (1998), 144–159 | DOI | MR | Zbl
[7] Kalmykov M. U., Sidorov S. P., “A moment problem for discrete nonpositive measures on a finite interval”, Internat. J. Math. Math. Sci., 2011 (2011), article ID 545780, 8 | DOI | MR | Zbl
[8] Korovkin P. P., “O poryadke priblizheniya funktsii lineinymi polozhitelnymi operatorami”, Dokl. AN SSSR, 114:6 (1957), 1158–1161 | MR | Zbl
[9] Videnskii V. S., “Ob odnom tochnom neravenstve dlya lineinykh polozhitelnykh operatorov konechnogo ranga”, Dokl. AN TadzhSSR, 24:12 (1981), 715–717 | MR
[10] Magaril-Ilyaev G. G., “Printsip Lagranzha dlya gladkikh zadach s ogranicheniyami na konuse”, Vladikavkaz. mat. zhurn., 7:4 (2005), 38–45 | MR
[11] Shapiro A., “On duality theory of conic linear problems”, Semi-Infinite Programming: Recent Advances, Kluwer Acad. Publ., Dordrecht, 2002, 135–165 | MR
[12] Mupasiri D., Prophet M., “A note on the existence of shape-preserving projections”, Rocky Mountain J. Math., 37:2 (2007), 573–585 | DOI | MR | Zbl
[13] Mupasiri D., Prophet M. P., “On the difficulty of preserving monotonicity via projections and related results”, Jaen J. Approx., 2:1 (2010), 1–12 | MR
[14] Lewicki G., Prophet M., “Minimal shape-preserving projections in tensor product spaces”, J. Approx. Theory, 162:5 (2010), 931–951 | DOI | MR | Zbl
[15] Sidorov S., “Approximation of the rth differential operator by means of linear shape preserving opeartors of finite rank”, J. Approx. Theory, 124:2 (2003), 232–241 | DOI | MR | Zbl