Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2012_15_1_a11, author = {A. O. Savchenko}, title = {Calculation of the volume potential for ellipsoidal bodies}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {123--131}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a11/} }
A. O. Savchenko. Calculation of the volume potential for ellipsoidal bodies. Sibirskij žurnal industrialʹnoj matematiki, Tome 15 (2012) no. 1, pp. 123-131. http://geodesic.mathdoc.fr/item/SJIM_2012_15_1_a11/
[1] Kondratev B. P., Teoriya potentsiala. Novye metody i zadachi s resheniyami, Mir, M., 2007
[2] Muratov R. Z., Potentsialy ellipsoida, Atomizdat, M., 1976
[3] Nikiforov A. F., Uvarov V. B., Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1978 | MR
[4] Khokni R., Istvud Dzh., Chislennoe modelirovanie metodom chastits, Mir, M., 1987
[5] Beylkin G., Cramer R., Fann G., Harrison R. J., “Multiresolution separated representations of singular and weakly singular operators”, Appl. Comput. Harmon. Anal., 23 (2007), 235–253 | DOI | MR | Zbl
[6] Hackbuch W., “Efficient convolution with Newton potential in $d$ dimensions”, Numer. Math., 110 (2008), 449–489 | DOI | MR
[7] Maz'ya V., Schmidt G., Approximate Approximations, Math. Surveys and Monographs, 141, AMS, N.Y., 2007 | MR
[8] Lanzara F., Maz'ya V., Schmidt G., “Approximate approximations from scattered data”, J. Approx. Theory, 145:2 (2007), 141–170 | DOI | MR
[9] Lanzara F., Maz'ya V., Schmidt G., “On the fast computation of high dimensional volume potentials”, Math. Comp., 80 (2011), 887–904 | DOI | MR | Zbl
[10] Ivanov T., Maz'ya V., Schmidt G., “Boundary layer approximate approximations and cubature of potentials in domains”, Adv. Comput. Math., 10:3–4 (1999), 311–342 | DOI | MR | Zbl
[11] Bakhvalov N. S., Chislennye metody, Nauka, M., 1973 | MR | Zbl
[12] Titchmarsh E., Teoriya funktsii, Nauka, M., 1980 | MR | Zbl
[13] Ilin V. A., Poznyak E. G., Osnovy matematicheskogo analiza, Ch. I, Nauka, M., 1971 | MR
[14] Duboshin G. N., Nebesnaya mekhanika. Osnovnye zadachi i metody, Nauka, M., 1968 | Zbl