Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2011_14_4_a8, author = {E. I. Romenskiǐ}, title = {A thermodynamically consistent system of conservation laws for the flow of a~compressible fluid in an elastic porous medium}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {86--97}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a8/} }
TY - JOUR AU - E. I. Romenskiǐ TI - A thermodynamically consistent system of conservation laws for the flow of a~compressible fluid in an elastic porous medium JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2011 SP - 86 EP - 97 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a8/ LA - ru ID - SJIM_2011_14_4_a8 ER -
%0 Journal Article %A E. I. Romenskiǐ %T A thermodynamically consistent system of conservation laws for the flow of a~compressible fluid in an elastic porous medium %J Sibirskij žurnal industrialʹnoj matematiki %D 2011 %P 86-97 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a8/ %G ru %F SJIM_2011_14_4_a8
E. I. Romenskiǐ. A thermodynamically consistent system of conservation laws for the flow of a~compressible fluid in an elastic porous medium. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 4, pp. 86-97. http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a8/
[1] Biot M. A., “Theory of propagation of elastic waves in a fluid-saturated porous solid. I: Lowfrequency range”, J. Acoust. Soc. Amer., 28:2 (1956), 168–178 | DOI | MR
[2] Carcione J. M., Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic Porous and Electromagnetic Media, Elsevier, N.Y., 2007
[3] Plona T. J., “Observation of a second bulk compressionalwave in a porousmedium at ultrasonic frequencies”, Appl. Phys. Lett., 36:4 (1980), 259–261 | DOI
[4] Imomnazarov Kh. Kh., “Some remarks on the Biot system of equations describing wave propagation in a porous medium”, Appl. Math. Lett., 13:3 (2000), 33–35 | DOI | MR | Zbl
[5] Blokhin A. M., Dorovsky V. N., Mathematical modeling in the theory of multivelocity continuum, Nova Sci., N.Y., 1995 | MR
[6] Godunov S. K., Romenskii E. I., Elementy mekhaniki sploshnoi sredy i zakony sokhraneniya, Nauch. kniga, Novosibirsk, 1998 | Zbl
[7] Romenski E., Resnyansky A. D., Toro E. F., “Conservative hyperbolic formulation for compressible two-phase flow with different phase pressures and temperatures”, Quart. Appl. Math., 65:2 (2007), 259–279 | MR | Zbl
[8] Romenski E., Drikakis D., Toro E. F., “Conservative models and numerical methods for compressible two-phase flow”, J. Sci. Comput., 42:1 (2010), 68–95 | DOI | MR | Zbl
[9] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR
[10] Godunov S. K., Peshkov I. M., “Simmetricheskie giperbolicheskie uravneniya nelineinoi teorii uprugosti”, Zhurn. vychisl. matematiki i mat. fiziki, 48:6 (2008), 1034–1055 | Zbl
[11] Drew D. A., Passman S. L., Theory of Multicomponent Fluids, Applied Mathematical Sci., 135, Springer-Verl., N.Y., 1998 | MR | Zbl
[12] Favrie N., Gavrilyuk S. L. Saurel R., “Solid-fluid diffuse interface model in cases of extreme deformations”, J. Comput. Phys., 228:16 (2009), 6037–6077 | DOI | MR | Zbl