A thermodynamically consistent system of conservation laws for the flow of a~compressible fluid in an elastic porous medium
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 4, pp. 86-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

Basing on the method of thermodynamically consistent systems of conservation laws we develop a model of the isoentropic flow of a compressible fluid in an elastically deformable porous medium in the case of finite deformations, whose defining equations are hyperbolic and has divergence form. We also derive equations for the propagation of small amplitude waves in a motionless medium and analyze the dependence of the speed of sound on porosity.
Keywords: conservation laws, hyperbolic system, elastic porous medium.
@article{SJIM_2011_14_4_a8,
     author = {E. I. Romenskiǐ},
     title = {A thermodynamically consistent system of conservation laws for the flow of a~compressible fluid in an elastic porous medium},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {86--97},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a8/}
}
TY  - JOUR
AU  - E. I. Romenskiǐ
TI  - A thermodynamically consistent system of conservation laws for the flow of a~compressible fluid in an elastic porous medium
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 86
EP  - 97
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a8/
LA  - ru
ID  - SJIM_2011_14_4_a8
ER  - 
%0 Journal Article
%A E. I. Romenskiǐ
%T A thermodynamically consistent system of conservation laws for the flow of a~compressible fluid in an elastic porous medium
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 86-97
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a8/
%G ru
%F SJIM_2011_14_4_a8
E. I. Romenskiǐ. A thermodynamically consistent system of conservation laws for the flow of a~compressible fluid in an elastic porous medium. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 4, pp. 86-97. http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a8/

[1] Biot M. A., “Theory of propagation of elastic waves in a fluid-saturated porous solid. I: Lowfrequency range”, J. Acoust. Soc. Amer., 28:2 (1956), 168–178 | DOI | MR

[2] Carcione J. M., Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic Porous and Electromagnetic Media, Elsevier, N.Y., 2007

[3] Plona T. J., “Observation of a second bulk compressionalwave in a porousmedium at ultrasonic frequencies”, Appl. Phys. Lett., 36:4 (1980), 259–261 | DOI

[4] Imomnazarov Kh. Kh., “Some remarks on the Biot system of equations describing wave propagation in a porous medium”, Appl. Math. Lett., 13:3 (2000), 33–35 | DOI | MR | Zbl

[5] Blokhin A. M., Dorovsky V. N., Mathematical modeling in the theory of multivelocity continuum, Nova Sci., N.Y., 1995 | MR

[6] Godunov S. K., Romenskii E. I., Elementy mekhaniki sploshnoi sredy i zakony sokhraneniya, Nauch. kniga, Novosibirsk, 1998 | Zbl

[7] Romenski E., Resnyansky A. D., Toro E. F., “Conservative hyperbolic formulation for compressible two-phase flow with different phase pressures and temperatures”, Quart. Appl. Math., 65:2 (2007), 259–279 | MR | Zbl

[8] Romenski E., Drikakis D., Toro E. F., “Conservative models and numerical methods for compressible two-phase flow”, J. Sci. Comput., 42:1 (2010), 68–95 | DOI | MR | Zbl

[9] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR

[10] Godunov S. K., Peshkov I. M., “Simmetricheskie giperbolicheskie uravneniya nelineinoi teorii uprugosti”, Zhurn. vychisl. matematiki i mat. fiziki, 48:6 (2008), 1034–1055 | Zbl

[11] Drew D. A., Passman S. L., Theory of Multicomponent Fluids, Applied Mathematical Sci., 135, Springer-Verl., N.Y., 1998 | MR | Zbl

[12] Favrie N., Gavrilyuk S. L. Saurel R., “Solid-fluid diffuse interface model in cases of extreme deformations”, J. Comput. Phys., 228:16 (2009), 6037–6077 | DOI | MR | Zbl