The dynamical properties of a~discrete event model of a~public transportation network
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 4, pp. 50-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the well-known model of a public transportation network described by linear equations in the algebra on the set of real numbers whose operations are maximum and addition. In order to study the stability properties of the train schedule in this network we suggest a representation of the model as a discrete event system. The available stability theorems for invariant sets of the discrete event systems describing the situation of trains going on schedule enable us to make some statements concerning the properties of a schedule in this model of railroad transport.
Keywords: discrete event system, Lyapunov stability, railroad network, $(\max,+)$-algebra.
@article{SJIM_2011_14_4_a5,
     author = {N. V. Nagul},
     title = {The dynamical properties of a~discrete event model of a~public transportation network},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {50--62},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a5/}
}
TY  - JOUR
AU  - N. V. Nagul
TI  - The dynamical properties of a~discrete event model of a~public transportation network
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 50
EP  - 62
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a5/
LA  - ru
ID  - SJIM_2011_14_4_a5
ER  - 
%0 Journal Article
%A N. V. Nagul
%T The dynamical properties of a~discrete event model of a~public transportation network
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 50-62
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a5/
%G ru
%F SJIM_2011_14_4_a5
N. V. Nagul. The dynamical properties of a~discrete event model of a~public transportation network. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 4, pp. 50-62. http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a5/

[1] Michel A. N., Kaining W. K., Bo H., Qualitative Theory of Dynamical Systems, Marcel Dekker, N.Y., 2001 | MR

[2] Heidergott B., de Vries R., “Towards a $(\max,+)$ control theory for public transportation networks”, Discrete Event Dynamic Systems: Theory and Applications, 11 (2001), 371–398 | MR | Zbl

[3] Braker J. G., “Max-algebramodeling and analysis of time-dependent transportation network”, Proc. 1 European Control Conf. Grenoble, 1991, 1831–1836

[4] Bacelli F., Cohen G., Olsder G. J., Quandrat J. P., Synchronization and Linearity: An Algebra for Discrete Event Systems, John Wiley and Sons, N.Y., 1992 | MR

[5] de Vries R. E., On the Asymptotic Behavior of Discrete Event Systems, PhD. Thesis, Delft Univ. of Technology, Delft, 1992

[6] Cunningham-Green R. A., Minimax algebra, Lect. Notes in Economics and Math. Systems, 166, Springer-Verl., Berlin, 1979 | MR

[7] Koen G., Moller P., Kadra Zh.-P., Vo M., “Algebraicheskie sredstva otsenivaniya kharakteristik diskretno-sobytiinykh sistem”, TIIER, 77:1 (1989), 30–53

[8] Antsaklis P. I., Mishel E. N., Passino K. M., “Ustoichivost po Lyapunovu klassa sistem diskretnykh sobytii”, Avtomatika i telemekhanika, 1992, no. 8, 3–18 | MR | Zbl

[9] Zubov V. I., Metody A. M. Lyapunova i ikh primeneniya, Izd-vo LGU, L., 1957

[10] Matrosov V. M., Anapolskii L. Yu., Vasilev S. N., Metod sravneniya v matematicheskoi teorii sistem, Nauka, Novosibirsk, 1980

[11] Romanko V. K., Raznostnye uravneniya, BINOM, M., 2006