Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2011_14_4_a5, author = {N. V. Nagul}, title = {The dynamical properties of a~discrete event model of a~public transportation network}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {50--62}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a5/} }
TY - JOUR AU - N. V. Nagul TI - The dynamical properties of a~discrete event model of a~public transportation network JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2011 SP - 50 EP - 62 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a5/ LA - ru ID - SJIM_2011_14_4_a5 ER -
N. V. Nagul. The dynamical properties of a~discrete event model of a~public transportation network. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 4, pp. 50-62. http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a5/
[1] Michel A. N., Kaining W. K., Bo H., Qualitative Theory of Dynamical Systems, Marcel Dekker, N.Y., 2001 | MR
[2] Heidergott B., de Vries R., “Towards a $(\max,+)$ control theory for public transportation networks”, Discrete Event Dynamic Systems: Theory and Applications, 11 (2001), 371–398 | MR | Zbl
[3] Braker J. G., “Max-algebramodeling and analysis of time-dependent transportation network”, Proc. 1 European Control Conf. Grenoble, 1991, 1831–1836
[4] Bacelli F., Cohen G., Olsder G. J., Quandrat J. P., Synchronization and Linearity: An Algebra for Discrete Event Systems, John Wiley and Sons, N.Y., 1992 | MR
[5] de Vries R. E., On the Asymptotic Behavior of Discrete Event Systems, PhD. Thesis, Delft Univ. of Technology, Delft, 1992
[6] Cunningham-Green R. A., Minimax algebra, Lect. Notes in Economics and Math. Systems, 166, Springer-Verl., Berlin, 1979 | MR
[7] Koen G., Moller P., Kadra Zh.-P., Vo M., “Algebraicheskie sredstva otsenivaniya kharakteristik diskretno-sobytiinykh sistem”, TIIER, 77:1 (1989), 30–53
[8] Antsaklis P. I., Mishel E. N., Passino K. M., “Ustoichivost po Lyapunovu klassa sistem diskretnykh sobytii”, Avtomatika i telemekhanika, 1992, no. 8, 3–18 | MR | Zbl
[9] Zubov V. I., Metody A. M. Lyapunova i ikh primeneniya, Izd-vo LGU, L., 1957
[10] Matrosov V. M., Anapolskii L. Yu., Vasilev S. N., Metod sravneniya v matematicheskoi teorii sistem, Nauka, Novosibirsk, 1980
[11] Romanko V. K., Raznostnye uravneniya, BINOM, M., 2006