A numerical method for solving an optimal control problem with fixed endpoints of trajectories and a~convex functional
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 4, pp. 125-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a numerical method for solving the problem of taking a nonlinear system to the zero state while minimizing a nonnegative convex functional, whose particular cases include the problem of minimizing resource or energy consumption. The method is based on the maximum principle and approximations of solid bodies by families of simplices. The properties of coverings of solid bodies by simplices enable us to justify the convergence of the method.
Keywords: admissible control, optimal control, convex functional.
@article{SJIM_2011_14_4_a11,
     author = {G. V. Shevchenko},
     title = {A numerical method for solving an optimal control problem with fixed endpoints of trajectories and a~convex functional},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {125--135},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a11/}
}
TY  - JOUR
AU  - G. V. Shevchenko
TI  - A numerical method for solving an optimal control problem with fixed endpoints of trajectories and a~convex functional
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 125
EP  - 135
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a11/
LA  - ru
ID  - SJIM_2011_14_4_a11
ER  - 
%0 Journal Article
%A G. V. Shevchenko
%T A numerical method for solving an optimal control problem with fixed endpoints of trajectories and a~convex functional
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 125-135
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a11/
%G ru
%F SJIM_2011_14_4_a11
G. V. Shevchenko. A numerical method for solving an optimal control problem with fixed endpoints of trajectories and a~convex functional. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 4, pp. 125-135. http://geodesic.mathdoc.fr/item/SJIM_2011_14_4_a11/

[1] Wang J. R., Xiang X., Wei W., “The constructive approach on the time optimal control of system governed by nonlinear equations on Banach spaces”, Electronic J. Quantative Theory of Differential Equations, 2009, no. 45, 1–10 http://www.math.u-szeged.hu/ejqtde | MR

[2] Shevchenko G. V., “Metod nakhozhdeniya optimalnogo po minimumu raskhoda resursov upravleniya dlya nelineinykh statsionarnykh sistem”, Avtomatika i telemekhanika, 2009, no. 4, 119–130 | MR | Zbl

[3] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1982

[4] Shevchenko G. V., “Lineinaya zadacha optimalnogo upravleniya s vypuklym odnorodnym funktsionalom”, Fund. i prikl. matematika, 5:3 (1999), 757–763 | MR | Zbl

[5] von Hohenbalken B., “A finite algorithm to maximize certain pseudoconcave functions on polytopes”, Math. Program, 9 (1975), 189–206 | DOI | MR | Zbl

[6] Balashevich N. V., Gabasov R., Kirillova F. M., “Chislennye metody programmnoi i pozitsionnoi optimizatsii lineinykh sistem”, Zhurn. vychisl. matematiki i mat. fiziki, 40:6 (2000), 838–859 | MR | Zbl