Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2011_14_3_a8, author = {I. V. Nekrasova}, title = {Some models of hydraulic shock in an oil-bearing layer}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {79--86}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a8/} }
I. V. Nekrasova. Some models of hydraulic shock in an oil-bearing layer. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 3, pp. 79-86. http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a8/
[1] Adachi J. I., Detournay E., Peirce A. P., “Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth across stress barriers”, Internat. J. Rock Mechanics and Mining Sci., 47 (2010), 625–639 | DOI
[2] Kovalyshen Y., Detournay E., “A reexamination of the classical PKNModel of hydraulic fracture”, Transp. Porous Med., 81 (2010), 317–339 | DOI
[3] Liang Weiguoab, Zhao Yangshenga, “A mathematical model for solid liquid and mass transfer coupling and numerical simulation for hydraulic fracture in rock salt”, Progress in Natural Sci., 15:8 (2005), 742–748 | DOI
[4] Garipov T. T., “Modelirovanie protsessa gidrorazryva plasta v porouprugoi srede”, Mat. modelirovanie, 18:6 (2006), 53–69 | MR | Zbl
[5] Meirmanov A. M., “Metod dvukhmasshtabnoi skhodimosti Nguetsenga v zadachakh filtratsii i seismoakustiki v uprugikh poristykh sredakh”, Sib. mat. zhurn., 48:3 (2007), 645–667 | MR | Zbl
[6] Burridge R., Keller J. B., “Poroelasticity equations derived from microstructure”, J. Acoustic Soc. America, 70:4 (1981), 1140–1146 | DOI | Zbl
[7] Meirmanov A. M., “Vyvod uravnenii neizotermicheskoi akustiki v uprugikh poristykh sredakh”, Sib. mat. zhurn., 51:1 (2010), 156–174 | MR | Zbl
[8] Nguetseng G., “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20:3 (1989), 608–623 | DOI | MR | Zbl