Some models of hydraulic shock in an oil-bearing layer
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 3, pp. 79-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose two mathematical models for determining pressure field distribution in a layer near a well during a hydraulic shock. The derivation of the models rests on a strict averaging of the exact equations describing the joint motion of solid ground and a viscous fluid filling the pores on a microscopic level.
Keywords: hydraulic fracturing, Stokes and Lamé equations, two-scale convergence.
@article{SJIM_2011_14_3_a8,
     author = {I. V. Nekrasova},
     title = {Some models of hydraulic shock in an oil-bearing layer},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {79--86},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a8/}
}
TY  - JOUR
AU  - I. V. Nekrasova
TI  - Some models of hydraulic shock in an oil-bearing layer
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 79
EP  - 86
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a8/
LA  - ru
ID  - SJIM_2011_14_3_a8
ER  - 
%0 Journal Article
%A I. V. Nekrasova
%T Some models of hydraulic shock in an oil-bearing layer
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 79-86
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a8/
%G ru
%F SJIM_2011_14_3_a8
I. V. Nekrasova. Some models of hydraulic shock in an oil-bearing layer. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 3, pp. 79-86. http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a8/

[1] Adachi J. I., Detournay E., Peirce A. P., “Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth across stress barriers”, Internat. J. Rock Mechanics and Mining Sci., 47 (2010), 625–639 | DOI

[2] Kovalyshen Y., Detournay E., “A reexamination of the classical PKNModel of hydraulic fracture”, Transp. Porous Med., 81 (2010), 317–339 | DOI

[3] Liang Weiguoab, Zhao Yangshenga, “A mathematical model for solid liquid and mass transfer coupling and numerical simulation for hydraulic fracture in rock salt”, Progress in Natural Sci., 15:8 (2005), 742–748 | DOI

[4] Garipov T. T., “Modelirovanie protsessa gidrorazryva plasta v porouprugoi srede”, Mat. modelirovanie, 18:6 (2006), 53–69 | MR | Zbl

[5] Meirmanov A. M., “Metod dvukhmasshtabnoi skhodimosti Nguetsenga v zadachakh filtratsii i seismoakustiki v uprugikh poristykh sredakh”, Sib. mat. zhurn., 48:3 (2007), 645–667 | MR | Zbl

[6] Burridge R., Keller J. B., “Poroelasticity equations derived from microstructure”, J. Acoustic Soc. America, 70:4 (1981), 1140–1146 | DOI | Zbl

[7] Meirmanov A. M., “Vyvod uravnenii neizotermicheskoi akustiki v uprugikh poristykh sredakh”, Sib. mat. zhurn., 51:1 (2010), 156–174 | MR | Zbl

[8] Nguetseng G., “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20:3 (1989), 608–623 | DOI | MR | Zbl