The error of Euler's method for floating-point arithmetic computations
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 3, pp. 37-49

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an algorithm that enables us to find the optimal number of steps in Euler's method, in the sense of computational precision, while solving a Cauchy problem for a system of linear differential equations with constant coefficients. We include numerical examples of applications of this method for evaluating a solution to the Cauchy problem at a point and constructing solutions to systems of nonlinear ordinary differential equations.
Keywords: Euler's method, Cauchy problem, system of ordinary differential equations, floating-point arithmetic, computational error.
@article{SJIM_2011_14_3_a4,
     author = {E. A. Kalinina and O. N. Samarina},
     title = {The error of {Euler's} method for floating-point arithmetic computations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {37--49},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a4/}
}
TY  - JOUR
AU  - E. A. Kalinina
AU  - O. N. Samarina
TI  - The error of Euler's method for floating-point arithmetic computations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 37
EP  - 49
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a4/
LA  - ru
ID  - SJIM_2011_14_3_a4
ER  - 
%0 Journal Article
%A E. A. Kalinina
%A O. N. Samarina
%T The error of Euler's method for floating-point arithmetic computations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 37-49
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a4/
%G ru
%F SJIM_2011_14_3_a4
E. A. Kalinina; O. N. Samarina. The error of Euler's method for floating-point arithmetic computations. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 3, pp. 37-49. http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a4/