The error of Euler's method for floating-point arithmetic computations
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 3, pp. 37-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an algorithm that enables us to find the optimal number of steps in Euler's method, in the sense of computational precision, while solving a Cauchy problem for a system of linear differential equations with constant coefficients. We include numerical examples of applications of this method for evaluating a solution to the Cauchy problem at a point and constructing solutions to systems of nonlinear ordinary differential equations.
Keywords: Euler's method, Cauchy problem, system of ordinary differential equations, floating-point arithmetic, computational error.
@article{SJIM_2011_14_3_a4,
     author = {E. A. Kalinina and O. N. Samarina},
     title = {The error of {Euler's} method for floating-point arithmetic computations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {37--49},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a4/}
}
TY  - JOUR
AU  - E. A. Kalinina
AU  - O. N. Samarina
TI  - The error of Euler's method for floating-point arithmetic computations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 37
EP  - 49
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a4/
LA  - ru
ID  - SJIM_2011_14_3_a4
ER  - 
%0 Journal Article
%A E. A. Kalinina
%A O. N. Samarina
%T The error of Euler's method for floating-point arithmetic computations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 37-49
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a4/
%G ru
%F SJIM_2011_14_3_a4
E. A. Kalinina; O. N. Samarina. The error of Euler's method for floating-point arithmetic computations. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 3, pp. 37-49. http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a4/

[1] Lewis D. M., “A compiled-code hardware accelerator for circuit simulation”, IEEE Trans. Computer-Aided Design, 11:5 (1992), 555–565 | DOI

[2] Higham N. J., Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996 | MR | Zbl

[3] Golub G. H., Ortega J. M., Scientific Computing and Differential Equations, Acad. Press, Boston, MA, 1992 | MR | Zbl

[4] Ortega Dzh., Pul U., Vvedenie v chislennye metody resheniya differentsialnykh uravnenii, Nauka, M., 1986 | MR | Zbl

[5] Björk A., Dahlquist G., Numerical Mathematics and Scientific Computations, v. 1, SIAM, Philadelphia, 2008

[6] Demidovich B. P., Maron I. A., Osnovy vychislitelnoi matematiki, Fizmatgiz, 1963 | MR

[7] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl

[8] Kahaner D., Moler C., Nash S., Numerical Methods and Software, Prentice-Hall, Englewood Cliffs, 1989 | Zbl

[9] Stuart A. M., “Probabilistic and deterministic convergence proofs for software for initial value problems”, Numer. Algorithms, 14:3 (1997), 227–260 | DOI | MR | Zbl

[10] Tucker W., “A rigorous ODE solver and Smale's 14th problem”, Found. Comput. Math., 2 (2002), 53–117 | MR | Zbl

[11] Stepanov V. V., Kurs differentsialnykh uravnenii, Gostekhizdat, M.–L., 1950

[12] Akhmerov R. R., Chislennye metody resheniya obyknovennykh differentsialnykh uravnenii, izd. NGU, Novosibirsk, 1994

[13] Godunov S. K., Lektsii po sovremennym aspektam lineinoi algebry, Nauch. kniga, Novosibirsk, 2002

[14] Korhonen T., Tavi P., “Automatic time-step adaptation of the forward Euler method in simulation of models of ion channels and excitable cells and tissue”, Simul. Model. Practice and Theory, 16 (2008), 639–644 | DOI