Solving some problems of elasticity theory by the integral equation method for a~holomorphic vector
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 3, pp. 143-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study are some problems of elasticity theory with nonclassical boundary value conditions. We assume that the load and displacement vectors are given on a part of the boundary, while on the other parts of the boundary, the load vector or the displacement vector may be given separately, and no conditions are imposed on the remaining part of the surface (of some nonzero measure). We consider the questions of uniqueness for the solutions to these problems. Solving the nonclassical problems is reduced to a system of singular integral equations for a holomorphic vector.
Keywords: elasticity theory, inverse problems, integral equations.
@article{SJIM_2011_14_3_a14,
     author = {A. A. Shvab},
     title = {Solving some problems of elasticity theory by the integral equation method for a~holomorphic vector},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {143--150},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a14/}
}
TY  - JOUR
AU  - A. A. Shvab
TI  - Solving some problems of elasticity theory by the integral equation method for a~holomorphic vector
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 143
EP  - 150
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a14/
LA  - ru
ID  - SJIM_2011_14_3_a14
ER  - 
%0 Journal Article
%A A. A. Shvab
%T Solving some problems of elasticity theory by the integral equation method for a~holomorphic vector
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 143-150
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a14/
%G ru
%F SJIM_2011_14_3_a14
A. A. Shvab. Solving some problems of elasticity theory by the integral equation method for a~holomorphic vector. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 3, pp. 143-150. http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a14/

[1] Kosarev G. L., Rizaev E. Z., Sudo K., “Opredelenie parametrov ochagov zemletryasenii po nablyudaemym ostatochnym smescheniyam zemnoi poverkhnosti”, Dokl. AN SSSR, 288:4 (1986), 75–81

[2] Shvab A. A., “Neklassicheskaya uprugoplasticheskaya zadacha”, Izv. AN SSSR. Ser. Mekhanika tverdogo tela, 1988, no. 1, 140–146

[3] Shvab A. A., “Nekorrektnye staticheskie zadachi teorii uprugosti”, Izv. AN SSSR. Ser. Mekhanika tverdogo tela, 1989, no. 6, 98–105

[4] Kubo S., “Inverse problems related of the mechanics and fracture of solids and structures”, Internat. Soc. Microbial Ecology. Ser. 1, 31:2 (1988), 120–128

[5] Gao Z., Mura T., “Elasticity problems with partially overspecified boundary conditions”, Internat. J. Engrg. Sci., 29:6 (1991), 25–31 | DOI

[6] Tanaka M., Masuda Y., “Boundary elementmethod applied to some inverse problems”, Engrg. Analysis, 3:3 (1986), 37–42

[7] Marin L., Dinh Nao, Lesnic D., “Conjugate gradient-boundary element method for the Cauchy problem in elasticity”, Quart. J. Mech. Appl. Math., 55:2 (2002), 227–247 | DOI | MR | Zbl

[8] Marin L., Elliot L., Ingham D. B., Lesnic D., “Boundary element regularisation methods for solving the Cauchy problem in linear elasticity”, Inverse Problems in Engrg., 10:4 (2002), 335–337 | DOI | MR

[9] Marin L., Lesnic D., “Regularized boundary element solution for inverse boundary value problem in liniear elasticity”, Comm. Numer. Meth. Engrg., 18 (2002), 817–825 | DOI | MR | Zbl

[10] Marin L., Lesnic D., “BEM first-order regularisation method in linear elasticity for boundary identification”, Comput. Methods Appl. Mech. Engrg., 192 (2003), 2059–2071 | DOI | MR | Zbl

[11] Schwab A. A., “Nonclassical problems of deformed solid body”, Symp. “Verformung und Bruch”, Magdeburg, 1988, 90

[12] Fueter R., “Über die analytischen Darstellungen der regularen Functionen einer Quaternion envariablen”, Comment. Math. Helv., 4 (1932), 141–153 | DOI | MR

[13] Moisil Gr. C., Theodoresco N., “Fonction holomorphes dans l'espace”, Mathematika, 5 (1931), 142–159 | Zbl

[14] Bitsadze A. V., Osnovy teorii analiticheskikh funktsii, Nauka, M., 1984 | MR

[15] Shvab A. A., “Ob odnoi lokalnoi zadache prodolzheniya”, Dinamika sploshnoi sredy, 92, 1989, 23–28 | MR