An effective model of the dynamics of a~barotropic gas with fast oscillating initial data
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 3, pp. 100-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study are the classical three-dimensional Navier–Stokes equations of a compressible inhomogeneous viscous fluid in a smooth bounded domain endowed with no-slip conditions on the boundary of the domain and fast oscillating initial density distributions. The state equation of the medium is the state equation for a barotropic gas. We assume that the adiabatic constant is greater than 3. We give a rigorous derivation of the homogenization procedure as the frequencies of fast oscillations tend to infinity and obtain a limit effective model of the dynamics of a compressible viscous gas with fast oscillating initial data.
Mots-clés : viscous compressible barotropic gas
Keywords: homogenization, fast oscillating initial data.
@article{SJIM_2011_14_3_a10,
     author = {S. A. Sazhenkov},
     title = {An effective model of the dynamics of a~barotropic gas with fast oscillating initial data},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {100--111},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a10/}
}
TY  - JOUR
AU  - S. A. Sazhenkov
TI  - An effective model of the dynamics of a~barotropic gas with fast oscillating initial data
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 100
EP  - 111
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a10/
LA  - ru
ID  - SJIM_2011_14_3_a10
ER  - 
%0 Journal Article
%A S. A. Sazhenkov
%T An effective model of the dynamics of a~barotropic gas with fast oscillating initial data
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 100-111
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a10/
%G ru
%F SJIM_2011_14_3_a10
S. A. Sazhenkov. An effective model of the dynamics of a~barotropic gas with fast oscillating initial data. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 3, pp. 100-111. http://geodesic.mathdoc.fr/item/SJIM_2011_14_3_a10/

[1] Lions P.-L., Mathematical Topics in Fluid Mechanics, v. 2, Compressible Models, Univ. Press, Oxford, 1998 | MR

[2] Feireisl E., Novotný A., Petzeltová H., “On the existence of globally defined weak solutions to the Navier–Stokes equations”, J. Math. Fluid Mech., 3 (2001), 358–392 | DOI | MR | Zbl

[3] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[4] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[5] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993 | MR | Zbl

[6] Pyatnitskii A. L., Chechkin G. A., Shamaev A. S., Usrednenie. Metody i prilozheniya, Nauch. kniga, Novosibirsk, 2007

[7] Plotnikov P. I., Sokolovski Zh., “Statsionarnye resheniya uravnenii Nave–Stoksa dlya dvukhatomnykh gazov”, Uspekhi mat. nauk, 62:3(375) (2007), 117–148 | MR | Zbl

[8] Tartar L., “$H$-measures, a new approach for studying homogenisation oscillations and concentration effects in partial differential equations”, Proc. Roy. Soc. Edinburgh Sect. A, 115 (1990), 193–230 | MR | Zbl

[9] Sazhenkov S. A., “Uravnenie Tartara dlya gomogenizatsii modeli dinamiki melkodispersnykh smesei”, Sib. mat. zhurn., 42:6 (2001), 1375–1390 | MR | Zbl

[10] Amosov A. A., Zlotnik A. A., “O kvaziosrednennykh uravneniyakh odnomernogo dvizheniya vyazkoi barotropnoi sredy s bystroostsilliruyuschimi dannymi”, Zhurn. vychisl. matematiki i mat. fiziki, 36:2 (1996), 87–110 | MR | Zbl

[11] Amosov A. A., Zlotnik A. A., “Razreshimost “v tselom” kvaziosrednennykh uravnenii odnomernogo dvizheniya vyazkoi barotropnoi sredy s negladkimi dannymi”, Vestnik MEI, 1994, no. 4, 7–24 | MR

[12] Bakhvalov N. S., Eglit M. E., “Protsessy v periodicheskikh sredakh, ne opisyvaemye v terminakh srednikh kharakteristik”, Dokl. AN SSSR, 268:4 (1983), 836–840 | MR | Zbl

[13] Lions P.-L., Mathematical Topics in Fluid Mechanics, v. 1, Incompressible Models, Univ. Press, Oxford, 1996 | MR

[14] DiPerna R. J., Lions P.-L., “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98 (1989), 511–547 | DOI | MR | Zbl

[15] Tartar L., “Compensated compactness and applications to partial differential equations”, Nonlinear Analysis and Mechanics: Heriot.Watt Symp., v. IV, Res. Notes in Math., 39, Pitman, Boston, Mass., 1979, 136–212 | MR

[16] Ball J. M., “A version of the fundamental theorem for Young measures”, PDEs and Continuum Models of Phase Transitions, Lect. Notes in Physics, 344, Springer-Verl., Berlin–Heidelberg–New York, 1989, 241–259 | MR

[17] Malek J., Nečas J., Rokyta M., Ružička M., Weak and Measure-valued Solutions to Evolutionary PDEs, Chapman and Hall, London, 1996 | MR | Zbl