Statistical modeling of the dynamics of populations affected by toxic pollutants
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 2, pp. 84-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a stochastic model describing the dynamics of competing populations whose individua are affected by toxic pollutants. In order to construct the model, we use a probabilistic analog of the Lotka–Volterra model as a multidimensional inhomogeneous nonlinear birth and death process. We complement the postulates of the birth and death process with a description of the mechanism how? the toxic substance affects the death rate. We construct recurrences describing the dynamics of the population and the quantity of the toxic substance in the environment. We develop an algorithm for modeling the dynamics of populations and the quantity of the toxic substance basing on the Monte-Carlo method. We present the results of simulations studying degeneration conditions for one of the two competing populations, as well as conditions which guarantee that their numbers are maintained at nonzero stationary levels. In order to study analytically the behavior of the expected values of the populations we construct an auxiliary model as a system of nonlinear differential equations.
@article{SJIM_2011_14_2_a10,
     author = {N. V. Pertsev and B. Yu. Pichugin and K. K. Loginov},
     title = {Statistical modeling of the dynamics of populations affected by toxic pollutants},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {84--94},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a10/}
}
TY  - JOUR
AU  - N. V. Pertsev
AU  - B. Yu. Pichugin
AU  - K. K. Loginov
TI  - Statistical modeling of the dynamics of populations affected by toxic pollutants
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 84
EP  - 94
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a10/
LA  - ru
ID  - SJIM_2011_14_2_a10
ER  - 
%0 Journal Article
%A N. V. Pertsev
%A B. Yu. Pichugin
%A K. K. Loginov
%T Statistical modeling of the dynamics of populations affected by toxic pollutants
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 84-94
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a10/
%G ru
%F SJIM_2011_14_2_a10
N. V. Pertsev; B. Yu. Pichugin; K. K. Loginov. Statistical modeling of the dynamics of populations affected by toxic pollutants. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 2, pp. 84-94. http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a10/

[1] Pertsev N. V., Tsaregorodtseva G. E., “Matematicheskaya model dinamiki populyatsii, razvivayuscheisya v usloviyakh vozdeistviya vrednykh veschestv”, Sib. zhurn. industr. matematiki, 13:1(41) (2010), 109–120

[2] Volterra V., Matematicheskaya teoriya borby za suschestvovanie, Nauka, M., 1976 | MR

[3] Svirezhev Yu. M., Logofet D. O., Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978 | MR

[4] Barucha-Rid A. T., Elementy teorii markovskikh sluchainykh protsessov i ikh prilozheniya, Nauka, M., 1969

[5] Nikolis G., Prigozhin I., Samoorganizatsiya v neravnovesnykh sistemakh, Mir, M., 1979

[6] Nagaev S. V., Nedorezov L. V., Vakhtel V. I., “Veroyatnostnaya nepreryvno-diskretnaya model dinamiki chislennosti izolirovannoi populyatsii”, Sib. zhurn. industr. matematiki, 2:2(4) (1999), 147–152 | MR | Zbl

[7] Demidov S. A., Kalinkin A. V., Strygina L. A., “Vetvyaschiisya protsess so skhemoi vzaimodeistviya chastits vida ‘khischnik-zhertva’ ”, Obozrenie prikladnoi i promyshlennoi matematiki. Veroyatnost i statistika, 6:1 (1999), 137–138

[8] Kalinkin A. V., “Markovskie vetvyaschiesya protsessy s vzaimodeistviem”, Uspekhi mat. nauk, 57:2(344) (2002), 23–84 | MR | Zbl

[9] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy v sluchainoi srede i butylochnye gorlyshki v evolyutsii populyatsii”, Teoriya veroyatnostei i ee primeneniya, 51:1 (2006), 22–46 | MR | Zbl

[10] Pichugin B. Yu., “Stokhasticheskaya model izolirovannoi populyatsii s sezonnym razmnozheniem i samolimitirovaniem”, Sib. zhurn. industr. matematiki, 6:4(16) (2003), 75–81 | MR | Zbl

[11] Kalinkin A. V., Lange A. M., Mastikhin A. V., Shaposhnikov A. A., “Chislennye metody Monte-Karlo dlya modelirovaniya skhem vzaimodeistviya pri diskretnykh sostoyaniyakh”, Vestn. MGTU. Ser. Estestvennye nauki, 2005, no. 2, 53–74

[12] Pertsev N. V., Pichugin B. Yu., “Primenenie metoda Monte-Karlo dlya modelirovaniya dinamiki soobschestv vzaimodeistvuyuschikh individuumov”, Vestn. Voronezh. gos. tekhn. un-ta. Ser. Vychislitelnye i informatsionno-telekommunikatsionnye sistemy, 2:5 (2006), 70–77

[13] Ermakov S. M., Mikhailov G. A., Kurs statisticheskogo modelirovaniya, Nauka, M., 1976 | MR | Zbl

[14] Sobol I. M., Chislennye metody Monte-Karlo, Nauka, M., 1973 | MR

[15] Marchenko M. A., “Kompleks programm MONC dlya raspredelennykh vychislenii metodom Monte-Karlo”, Sib. zhurn. vychisl. matematiki, 7:1 (2004), 43–55 | Zbl