One class of nonscattering acoustic shells for a~model of anisotropic acoustics
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 2, pp. 15-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a model of linear acoustics describing diffraction of an acoustic wave on a local anisotropic inhomogeneity. Under study is the existence of inhomogeneities which do not scatter the incident acoustic fields that are generated by any exterior compactly supported sources. We prove the existence of the above-mentioned inhomogeneities. Some constructive way is given of constructing a class of anisotropic media depending on an arbitrary function of one variable. We obtain some explicit formulas that define the main parameters of the shell.
Keywords: acoustics equations, anisotropic media, nonscattering shells, compactly distributed sources.
@article{SJIM_2011_14_2_a1,
     author = {G. V. Alekseev and V. G. Romanov},
     title = {One class of nonscattering acoustic shells for a~model of anisotropic acoustics},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {15--20},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a1/}
}
TY  - JOUR
AU  - G. V. Alekseev
AU  - V. G. Romanov
TI  - One class of nonscattering acoustic shells for a~model of anisotropic acoustics
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 15
EP  - 20
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a1/
LA  - ru
ID  - SJIM_2011_14_2_a1
ER  - 
%0 Journal Article
%A G. V. Alekseev
%A V. G. Romanov
%T One class of nonscattering acoustic shells for a~model of anisotropic acoustics
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 15-20
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a1/
%G ru
%F SJIM_2011_14_2_a1
G. V. Alekseev; V. G. Romanov. One class of nonscattering acoustic shells for a~model of anisotropic acoustics. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 2, pp. 15-20. http://geodesic.mathdoc.fr/item/SJIM_2011_14_2_a1/

[1] Pendry J. B., Shurig D., Smith D. R., “Controlling electromagnetic fields”, Sci., 312 (2006), 1780–1782 | DOI | MR

[2] Shurig D., Pendry J. B., Smith D. R., “Calculation of material properties and ray tracing in transformation media”, Opt. Express, 14 (2006), 9794–9804 | DOI

[3] Cummer S. A., Schurig D., “One path to acoustic cloaking”, New J. Phys., 9:3 (2007), 45 | DOI

[4] Chen H., Wi B.-I., Zhang B., Kong J. A., “Electromagnetic wave interactions with a metamaterial cloak”, Phys. Rev. Lett., 99 (2007), 063903 | DOI

[5] Cummer S. A., Popa B. I., Schurig D. et al., “Scattering theory derivation of a 3D acoustic cloaking shell”, Phys. Rev. Let., 100 (2008), 024301 | DOI

[6] Romanov V. G., “Obratnaya zadacha difraktsii dlya uravnenii akustiki”, Dokl. AN, 431:3 (2010), 319–322 | Zbl

[7] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[8] Alekseev G. V., Metod normalnykh voln v podvodnoi akustike, Dalnauka, Vladivostok, 2006

[9] Alekseev G. V., “Inverse source problems of underwater acoustics”, European J. Appl. Math., 9 (1998), 589–605 | DOI | MR | Zbl