Localization of surface waves by small perturbations of the boundary of a~semisubmerged body
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 1, pp. 93-101

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown under the condition of symmetry that, by means of formation of a thin groove on the planar surface of a body parallel to the liquid's horizon in a cylindrical channel, we can achieve the following effect in the linear problem concerning the waves on water: on every arbitrarily short interval $(0,d)$ of the continuous spectrum, any prescribed number of the eigenvalues is formed giving rise to “localized” solutions, i.e., belonging to a Sobolev space.
Keywords: surface wave, trapping modes, localized solution, singular perturbations of the boundary.
@article{SJIM_2011_14_1_a8,
     author = {S. A. Nazarov},
     title = {Localization of surface waves by small perturbations of the boundary of a~semisubmerged body},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {93--101},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a8/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Localization of surface waves by small perturbations of the boundary of a~semisubmerged body
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 93
EP  - 101
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a8/
LA  - ru
ID  - SJIM_2011_14_1_a8
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Localization of surface waves by small perturbations of the boundary of a~semisubmerged body
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 93-101
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a8/
%G ru
%F SJIM_2011_14_1_a8
S. A. Nazarov. Localization of surface waves by small perturbations of the boundary of a~semisubmerged body. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 1, pp. 93-101. http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a8/