Localization of surface waves by small perturbations of the boundary of a~semisubmerged body
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 1, pp. 93-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown under the condition of symmetry that, by means of formation of a thin groove on the planar surface of a body parallel to the liquid's horizon in a cylindrical channel, we can achieve the following effect in the linear problem concerning the waves on water: on every arbitrarily short interval $(0,d)$ of the continuous spectrum, any prescribed number of the eigenvalues is formed giving rise to “localized” solutions, i.e., belonging to a Sobolev space.
Keywords: surface wave, trapping modes, localized solution, singular perturbations of the boundary.
@article{SJIM_2011_14_1_a8,
     author = {S. A. Nazarov},
     title = {Localization of surface waves by small perturbations of the boundary of a~semisubmerged body},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {93--101},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a8/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Localization of surface waves by small perturbations of the boundary of a~semisubmerged body
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 93
EP  - 101
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a8/
LA  - ru
ID  - SJIM_2011_14_1_a8
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Localization of surface waves by small perturbations of the boundary of a~semisubmerged body
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 93-101
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a8/
%G ru
%F SJIM_2011_14_1_a8
S. A. Nazarov. Localization of surface waves by small perturbations of the boundary of a~semisubmerged body. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 1, pp. 93-101. http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a8/

[1] Nazarov S. A., Taskinen Ya., “O spektre zadachi Steklova v oblasti s pikom”, Vestn. SPbGU. Ser. 1, 2008, no. 1, 56–65 | Zbl

[2] Kuznetsov N., Maz'ya V., Vainberg B., Linear Water Waves, Univ. Press, Cambridge, 2002 | MR

[3] Indeitsev D. A., Kuznetsov N. G., Motygin O. V., Mochalova Yu. A., Lokalizatsiya lineinykh voln, Izd-vo SPbGU, SPb., 2007

[4] Ursell F., “Trapping modes in the theory of surface waves”, Proc. Cambridge Phil. Soc., 47:2 (1951), 347–358 | DOI | MR | Zbl

[5] John F., “On the motion of floating bodies, I”, Comm. Pure Appl. Math., 2:1 (1949), 13–57 ; “II”, 3:1 (1950), 45–101 | DOI | MR | Zbl | DOI | MR

[6] Garipov R. M., “On the linear theory of gravity waves: the theorem of existence and uniqueness”, Arch. Rational Mech. Anal., 24 (1967), 352–362 | DOI | MR | Zbl

[7] Ursell F., “Mathematical aspects of trapping modes in the theory of surface waves”, J. Fluid Mech., 183 (1987), 421–437 | DOI | MR | Zbl

[8] McIver P., “Trapping of surface water waves by fixed bodies in channels”, Quart. J. Mech. Appl. Math., 44 (1991), 193–208 | DOI | MR | Zbl

[9] Bonnet-Ben Dhia A.-S., Joly P., “Mathematical analysis of guided water-waves”, SIAM J. Appl. Math., 53 (1993), 1507–1550 | DOI | MR | Zbl

[10] McIver M., “An example of non-uniqueness in the two-dimensional linear water wave problem”, J. Fluid Mech., 315 (1996), 257–266 | DOI | MR | Zbl

[11] Kuznetsov N., Porter R., Evans D. V., Simon M. J., “Uniqueness and trapped modes for surface-piercing cylinders in oblique waves”, J. Fluid Mech., 365 (1998), 351–368 | DOI | MR

[12] Nazarov S. A., “O sguschenii tochechnogo spektra na nepreryvnom v zadachakh lineinoi teorii voln na poverkhnosti idealnoi zhidkosti”, Zap. nauch. seminarov POMI, 348, 2007, 98–126 | MR

[13] Motygin O. V., “On trapping of surface water waves by cylindrical bodies in a channel”, Wave Motion, 45 (2008), 940–951 | DOI | MR

[14] Nazarov S. A., “Kontsentratsiya lovushechnykh mod v zadachakh lineinoi teorii voln na poverkhnosti zhidkosti”, Mat. sb., 199:12 (2008), 53–78 | MR | Zbl

[15] Nazarov S. A., Plamenevsky B. A., Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin–New York, 1994 | MR

[16] Nazarov S. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauch. kniga, Novosibirsk, 2001

[17] Nazarov S. A., “Ob osobennostyakh gradienta resheniya zadachi Neimana v vershine tonkogo konusa”, Mat. zametki, 42:1 (1987), 79–93 | MR | Zbl

[18] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningrad. gos. un-ta, L., 1980 | MR

[19] Evans D. V., Levitin M., Vasil'ev D., “Existence theorems for trappedmodes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl

[20] Agmon S., Nirenberg L., “Properties of solutions of ordinary differential equations in Banach spaces”, Comm. Pure Appl. Math., 16:2 (1963), 121–239 | DOI | MR | Zbl

[21] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. mat. ob-va, 16, 1963, 219–292

[22] Linton C. M., McIver P., “Embedded trapped modes in water waves and acoustics”, Wave motion, 45 (2007), 16–29 | DOI | MR

[23] Nazarov S. A., “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domain”, Sobolev Spaces in Mathematics, v. 2, Springer, N.Y., 2008, 261–309 | MR

[24] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR