The energy method for calculating quasi-stationary atmospheric electric fields
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 1, pp. 56-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new mathematical model is proposed to describe the quasi-stationary atmospheric electric fields with an approximate consideration of the ionosphere conductivity. Under the assumption of verticality of the geomagnetic field, a two-dimensional model of the ionosphere conducting layer is used that is customary for the large-scale fields. Within the framework of this model, the ionosphere can be described by a special boundary condition in a boundary value problem for the atmospheric electric field. A linear boundary value problem is stated with a symmetric positive definite elliptic operator. The minimum principle is substantiated for the quadratic functional of energy. The existence and uniqueness of a generalized solution are proved. Under study is also the imprecision of the approximate description of the ionosphere conductor.
Keywords: electric field, atmosphere, ionosphere, elliptic operator, energy functional.
@article{SJIM_2011_14_1_a5,
     author = {V. V. Denisenko},
     title = {The energy method for calculating quasi-stationary atmospheric electric fields},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {56--69},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a5/}
}
TY  - JOUR
AU  - V. V. Denisenko
TI  - The energy method for calculating quasi-stationary atmospheric electric fields
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 56
EP  - 69
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a5/
LA  - ru
ID  - SJIM_2011_14_1_a5
ER  - 
%0 Journal Article
%A V. V. Denisenko
%T The energy method for calculating quasi-stationary atmospheric electric fields
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 56-69
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a5/
%G ru
%F SJIM_2011_14_1_a5
V. V. Denisenko. The energy method for calculating quasi-stationary atmospheric electric fields. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 1, pp. 56-69. http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a5/

[1] Molchanov O., Hayakawa M., Seismo-Electromagnetics and Related Phenomena: History and Latest Results, Terrapub, Tokyo, 2008

[2] Pulinets S. A., Legen'ka A. D., Gaivoronskaya T. V., Depuev V. Kh., “Main phenomenological features of ionospheric precursors of strong earthquakes”, J. Atmospheric and Solar-Terrestrial Phys., 65 (2003), 1337–1347 | DOI

[3] Grimalsky V. V., Hayakawa M., Ivchenko V. N., Rapoport Yu. G., Zadorozhnii V. I., “Penetration of an electrostatic field from the lithosphere into the ionosphere and its effect on the D-region before earthquakes”, J. Atmospheric and Solar-Terrestrial Phys., 65 (2003), 391–407 | DOI

[4] Denisenko V. V., Boudjada M. Y., Horn M., Pomozov E. V., Biernat H. K., Schwingenschuh K., Lammer H., Prattes G., Cristea E., “Ionospheric conductivity effects on electrostatic field penetration into the ionosphere”, Natural Hazards and Earth System Sci. J., 8 (2008), 1009–1017 | DOI

[5] Akasofu S. I., Chepmen S., Solnechno-Zemnaya fizika, Mir, M., 1974

[6] Denisenko V. V., Biernat H. K., Mezentsev A. V., Shaidurov V. A., Zamay S. S., “Modification of conductivity due to acceleration of the ionospheric medium”, Ann. Geophysicae, 26 (2008), 2111–2130 | DOI

[7] Models Distribution and Staging Directory. National Space Science Data Center. NASA http://nssdcftp.gsfc.nasa.gov/models

[8] Kamide Y., Matsushita S. J., “Simulation studies of ionospheric electric fields and currents in relation to field aligned currents. 1. Queit Periods”, J. Geophys. Res., 84:8 (1979), 4083–4098 | DOI

[9] Ampferer M., Denisenko V. V., Hausleitner W., Krauss S., Stangl G., Boudjada M. Y., Biernat H. K., “Decrease of the electric field penetration into the ionosphere due to low conductivity at the near ground atmospheric layer”, Ann. Geophysicae, 28:3 (2010), 779–787 | DOI

[10] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Gostekhizdat, M., 1957

[11] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo SO AN SSSR, Novosibirsk, 1962

[12] Denisenko V. V., “Energeticheskii metod dlya trekhmernykh ellipticheskikh uravnenii s nesimmetrichnymi tenzornymi koeffitsientami”, Sib. mat. zhurn., 38:6 (1997), 1267–1281 | MR | Zbl

[13] Denisenko V. V., “Kraevaya zadacha dlya ellipticheskogo uravneniya s nesimmetrichnymi koeffitsientami v neodnolistnoi oblasti”, Sib. mat. zhurn., 43:6 (2002), 1304–1318 | MR | Zbl