Numerical experiments with the inhomogeneity indicator in positron emission tomography
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 1, pp. 140-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

By means of numerical methods, the question is studied of applicability of the inhomogeneity indicator in positron emission tomography. The signal registered by the tomograph is described in terms of an imitation model using the Monte Carlo method. The possibility is demonstrated of the effective use of the inhomogeneity indicator for solving the problem under consideration. Some numerical results are presented in graphical form for reconstructing the boundaries of unknown activity sources.
Keywords: positron emission tomography, inhomogeneity indicator, Compton scattering, Monte Carlo method.
@article{SJIM_2011_14_1_a12,
     author = {I. P. Yarovenko},
     title = {Numerical experiments with the inhomogeneity indicator in positron emission tomography},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {140--149},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a12/}
}
TY  - JOUR
AU  - I. P. Yarovenko
TI  - Numerical experiments with the inhomogeneity indicator in positron emission tomography
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 140
EP  - 149
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a12/
LA  - ru
ID  - SJIM_2011_14_1_a12
ER  - 
%0 Journal Article
%A I. P. Yarovenko
%T Numerical experiments with the inhomogeneity indicator in positron emission tomography
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 140-149
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a12/
%G ru
%F SJIM_2011_14_1_a12
I. P. Yarovenko. Numerical experiments with the inhomogeneity indicator in positron emission tomography. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 1, pp. 140-149. http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a12/

[1] Visvikis D., Cheze-Le Rest C., Jarritt P., “PET technology: current trends and future developments”, British J. Radiology, 77:923 (2004), 906–910 | DOI

[2] Bendriem B., The Theory and Practice of 3D PET, Kluwer Acad. Publ., Boston–London, 1998

[3] Grootoonk S., Spinks T. J., Sashin D., Spyrou N. M., Jones T., “Correction for scatter in 3D PET using dual energy window method”, Phys. Med. Biol., 41:12 (1996), 2757–2774 | DOI

[4] Bendriem B., Trebossen R., Frouin V., Syrota A., “A PET scatter correction using simultaneous acquisitions with low and high lower energy thresholds” (San Francisco, 1993), IEEE Medical Imaging Conf., 1993, 1779–1783, IEEE, N.Y.

[5] Shao L., Karp J. S., “Cross-plane scatter correction-point source deconvolution in PET”, IEEE Trans. Med. Imaging, 10:3 (1991), 234–239 | DOI

[6] Lercher M. J., Wienhard K., “Scatter correction in 3-D PET”, IEEE Trans. Med. Imaging, 13:4 (1994), 649–657 | DOI

[7] Ollinger J. M., “Model-based scatter correction for fully 3D PET”, Phys. Med. Biol., 41:1 (1996), 153–176 | DOI

[8] Watson C. C., Newport D. A., Casey M. E., “A single scatter simulation technique for scatter correction in 3D PET”, Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Kluwer Acad. Publ., Netherlands, 1996, 255–268

[9] Watson C. C., “New, faster, image-based scatter correction for 3D PET”, IEEE Trans. Nucl. Sci., 47:4 (2000), 1587–1594 | DOI

[10] Zaidi H., “Scatter modelling and correction strategies in fully 3-D PET”, Nucl. Med. Communications, 22:11 (2001), 1181–1184 | DOI

[11] Zaidi H., Montandon M.-L., “Scatter compensation techniques in PET”, PET Clinics, 2:2 (2007), 219–234 | DOI | MR

[12] Chinn G., Foudray A. M. K., Levin C. S., “A Method to include single photon events in image reconstruction for a 1 mm resolution PET system built with advanced 3-D positioning detectors”, IEEE Nucl. Sci. Symposium (San Diego, 2006), IEEE, N.Y., 2007, 1740–1745

[13] Kazantsev I. G., Matej S., Lewitt R. M., “Geometric model of single scatter in PET”, IEEE Nucl. Sci. Symposium (San Diego, 2006), IEEE, N.Y., 2007, 2740–2743

[14] Kosters T., Natterer F., Wubbeling F., “Scatter correction in PET using the transport equation”, IEEE Nucl. Sci. Symposium (San Diego, 2006), IEEE, N.Y., 2007, 3305–3309

[15] Anikonov D. S., “Postroenie indikatora neodnorodnosti pri radiatsionnom obsledovanii sredy”, Doklady AN, 357:3 (1997), 324–327

[16] Anikonov D. S., “Integro-differential heterogeneity indicator in tomography problem”, J. Inverse Ill-Posed Probl., 7:1 (1999), 17–59 | DOI | MR | Zbl

[17] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000

[18] Anikonov D. S., Nazarov V. G., “Integrodifferentsialnyi indikator neodnorodnosti po nepolnym dannym”, Doklady AN, 376:1 (2001), 24–26 | MR

[19] Konovalova D. S., Prokhorov I. V., “Chislennaya realizatsiya algoritma poetapnoi rekonstruktsii dlya zadachi rentgenovskoi tomografii”, Sib. zhurn. industr. matematiki, 11:4 (2008), 61–65 | MR

[20] Sobol I. M., Chislennye metody Monte-Karlo, Nauka, M., 1973 | MR

[21] Colombino P., Fiscella B., Trossi L., “Study of positrunium in water and ice from 22 to $-144^\circ$ C by annihilation quanta measurements”, II Nuovo Cimento, 38:2 (1965), 707–723 | DOI

[22] Fano U., Spenser L., Berger M., Perenos gamma izlucheniya, Gosatomizdat, 1963

[23] Hubbell J. H., Veigele W. J., Briggs E. A., Brown R. T., Cromer D. T., Howerton R. J., “Atomic form factors, incoherent scattering functions, and photon scattering cross sections”, J. Phys. Chem. Ref. Data, 4:3 (1975), 471–538 | DOI

[24] Manno I., Event reconstruction strategies http://www.rmki.kfki.hu/ ~manno/Borexino.html

[25] Yamamoto S., Horii H., Hurutani M., Matsumoto K., Senda M., “Investigation of single, random, and true counts from natural radioactivity in LSO-based clinical PET”, Ann. Nucl. Med., 19:2 (2005), 109–114 | DOI

[26] Hubbell J. H., Seltzer S. M., Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 Kev to 20 Mev for Elements $Z=1$ to 92 and 48 Additional Substances of Dosimetric Interest, Preprint ISTIR–5632, Nat. Inst. of Standard and Technology, Gaithersburg, 1995

[27] L'Ecuyer P., Cote S., “Implementing a random number package with splitting facilities”, ACM Trans. Math. Software, 17:1 (1991), 98–111 | DOI | MR