Pollutant transfer in water-bearing strata with accounting for two-site adsorption
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 1, pp. 127-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of pollutant transfer in a porous medium consisting of two zones (with moving and motionless water) taking into account convective transfer, hydrodynamic dispersion, two-site adsorption, and internal diffusive mass transfer between the two zones. Basing on a numerical solution to the problem, we determine the distribution of concentration of the substance in the moving water zone, the amount of the adsorbed substance (nonequilibirum, equilibrium, and general), and internal diffusive mass transfer for various combinations of non-equilibirum and equilibrium adsorption. Along with linear kinetics, we study the nonlinear kinetics of adsorption and internal diffusive mass transfer. We establish that with the growing share of non-equilibirum adsorption the rate and total amount of the adsorbed substance decrease, which leads to preceding advance of concentration profiles in the porous medium. In case the conditions are preserved, passage to nonlinear kinetics strengthens adsorption and internal diffusive mass transfer.
Mots-clés : substance adsorption, hydrodynamic dispersion
Keywords: internal mass transfer, moving and motionless fluid zones, substance transfer, porous medium, two-site adsorption.
@article{SJIM_2011_14_1_a11,
     author = {B. Kh. Khuzhaerov and Zh. M. Makhmudov and Sh. Kh. Zikiryaev},
     title = {Pollutant transfer in water-bearing strata with accounting for two-site adsorption},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {127--139},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a11/}
}
TY  - JOUR
AU  - B. Kh. Khuzhaerov
AU  - Zh. M. Makhmudov
AU  - Sh. Kh. Zikiryaev
TI  - Pollutant transfer in water-bearing strata with accounting for two-site adsorption
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 127
EP  - 139
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a11/
LA  - ru
ID  - SJIM_2011_14_1_a11
ER  - 
%0 Journal Article
%A B. Kh. Khuzhaerov
%A Zh. M. Makhmudov
%A Sh. Kh. Zikiryaev
%T Pollutant transfer in water-bearing strata with accounting for two-site adsorption
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 127-139
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a11/
%G ru
%F SJIM_2011_14_1_a11
B. Kh. Khuzhaerov; Zh. M. Makhmudov; Sh. Kh. Zikiryaev. Pollutant transfer in water-bearing strata with accounting for two-site adsorption. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 1, pp. 127-139. http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a11/

[1] Clark I., Fritz P., Environmental Isotopes in Hydrogeology, Lewis Publ., Boca Raton, 1997

[2] Fetter C. W., Contaminant Hydrology, Prentice-Hall, Upper Saddle River, 1999

[3] Kass W., Tracing Technique in Geohydrology, Balkema Publ., Rotterdam, 1998

[4] Selim H. M., Amacher M. C., Reactivity and Transport of Heavy Metals in Soils, Lewis Publ., Roca Raton, 1996

[5] Gavich I. K., Gidrodinamika, Nedra, M., 1988

[6] Metody prognoza solevogo rezhima gruntov i gruntovykh vod, Kolos, M., 1979

[7] Nikolaevskii V. N., Bondarev E. A., Mirkin M. I., Stepanova G. S., Terzi V. P., Dvizhenie uglevodorodnykh smesei v poristoi srede, Nedra, M., 1968

[8] Bear J., Verruijt A., Modelling Groundwater Flow and Pollution, Reidel, Dordrecht, 1987

[9] Bear J., Dynamics of Fluids in Porous Media, Elsevier, N.Y., 1972 | Zbl

[10] Clark M. M., Transport Modelling for Environmental Engineers and Scientists, John Wiley, N.Y., 1996

[11] Coats K. H., Smith B. D., “Dead-end pore volume and dispersion in porous media”, Soc. Pet. Engrg. J., 4:1 (1964), 73–84

[12] Genuchten M. van, Wierenga P. J., “Mass transfer studies in sorbing porous media. 1. Analytical Solution”, Soil Sci. Soc. Amer. J., 40:4 (1976), 473–479 | DOI

[13] Rao P. S. C., Jessup R. E., Addiscott T. M., “Experimental and theoretical aspects of solute diffusion in spherical and nonspherical aggregates”, Soil Sci., 133:6 (1982), 342–349 | DOI

[14] Rao P. S. C., Jessup R. E., Rolston D. E., Davidson J. M., Kilcrease D. P., “Experimental and mathematical description of nonadsorbed solute transfer by diffusion in spherical aggregates”, Soil Sci. Soc. Amer. J., 44:4 (1980), 684–688 | DOI

[15] Gamerdinger A. P., Wagenet R. J., Genuchten M. Th. van, “Application of two-site/tworegion models for studying simultaneous nonequilibrium transport and degradation of pesticides”, Soil Sci. Soc. Amer. J., 54:4 (1990), 957–963 | DOI

[16] Gaudet J. P., Jégat H., Vachaud G., Wierenga P. J., “Solute transfer, with exchange between mobile and stagnantwater, through unsaturated sand”, Soil Sci. Soc. Amer. J., 41:4 (1977), 665–671 | DOI

[17] Danaev N. T., Korsakova N. K., Penkovskii V. I., Massoperenos v priskvazhinnoi zone i elektromagnitnyi karotazh plastov, Izd-vo KNU, Almaty, 2005

[18] Penkovskii V. I., “Migratsiya solei pri promyvke pochv s kusochno-odnorodnym zasoleniem”, Izv. AN SSSR. Ser. MZhG, 1977, no. 3, 76–81

[19] Cussler E. L., Diffusion Mass Transfer in Fluid Systems, Univ. Press, Cambridge, 1997

[20] Hashimoto I., Deshpande K. B., Thomas H. C., “Peclet numbers and retardation factors for ion exchange columns”, Ind. Engrg. Chem. Fund., 3:3 (1964), 213–218 | DOI

[21] Lindstrom F. T., Boersma L., Stockard D., “A theory on the mass transport of previously distributed chemicals in a water saturated sorbing porous medium: Isothermal cases”, Soil Sci., 112:5 (1971), 291–300 | DOI

[22] Lindstrom F. T., Haque R., Freed V. H., Boersma L.,, “Theory on the movement of some herbicides in soils”, Environ. Sci. Tech., 1:7 (1967), 561–565 | DOI

[23] Massel R., Principles of Adsorption and Reaction on Solid Surfaces, John Wiley, N.Y., 1996

[24] Oddson J. K., Letey J., Weeks L. V., “Predicted distribution of organic chemicals in solution and adsorbed as a function of position and time for various chemical and soil properties”, Soil Sci. Soc. Amer. Proc., 34:3 (1970), 412–417 | DOI

[25] Lapidus L., Amundson N. R., “Mathematics of adsorption in beds. VI. The effect of longitudinal diffusion in ion exchange and chromatographic columns”, J. Phys. Chem., 56:8 (1952), 984–988 | DOI

[26] Davidson J. M., Chang R. K., “Transport of picloram in relation to soil-physical conditions and porewater velocity”, Soil Sci. Soc. Amer. Proc., 36:2 (1972), 257–261 | DOI

[27] Kay B. D., Elrick D. E., “Adsorption and movement of lindane in soils”, Soil Sci., 104:5 (1967), 314–322 | DOI

[28] Swanson R. A., Dutt G. R., “Chemical and physical processes that affect atrazine movement and distribution in soil systems”, Soil Sci. Soc. Amer. Proc., 37:6 (1973), 872–876 | DOI

[29] Genuchten M. Th. van, Davidson J. M., Wierenga P. J., “An evaluation of kinetic and equilibrium equations for the prediction of pesticide moment through porous media”, Soil Sci. Soc. Amer. Proc., 38:1 (1974), 29–35 | DOI

[30] Khuzhaërov B. Kh., Makhmudov Zh. M., Zikiryaev Sh. Kh., “Perenos veschestva v poristoi srede, nasyschennoi podvizhnoi i nepodvizhnoi zhidkostyu”, Inzh.-fiz. zhurn., 83:2 (2010), 248–254

[31] Cameron D. R., Klute A., “Convective-dispersive solute transport with a combined equilibrium and kinetic adsorption model”, Water Resources Research, 13:1 (1977), 183–188 | DOI

[32] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983 | MR