Theoretical analysis of boundary control extremal problems for Maxwell's equations
Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 1, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study are the extremal problems of multiplicative boundary control for timeharmonic Maxwell's equations considered with the impedance boundary condition for the electric field. The solvability of the original extremal problem is proved. Some sufficient conditions are derived on the original data which guarantee the stability of solutions to concrete extremal problems with respect to certain perturbations of both the quality functional and one of the known functions that has the meaning of the density of the electric current.
Keywords: Maxwell's equations, boundary control, solvability, stability estimates.
Mots-clés : impedance
@article{SJIM_2011_14_1_a0,
     author = {G. V. Alekseev and R. V. Brizitskii},
     title = {Theoretical analysis of boundary control extremal problems for {Maxwell's} equations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a0/}
}
TY  - JOUR
AU  - G. V. Alekseev
AU  - R. V. Brizitskii
TI  - Theoretical analysis of boundary control extremal problems for Maxwell's equations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2011
SP  - 3
EP  - 16
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a0/
LA  - ru
ID  - SJIM_2011_14_1_a0
ER  - 
%0 Journal Article
%A G. V. Alekseev
%A R. V. Brizitskii
%T Theoretical analysis of boundary control extremal problems for Maxwell's equations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2011
%P 3-16
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a0/
%G ru
%F SJIM_2011_14_1_a0
G. V. Alekseev; R. V. Brizitskii. Theoretical analysis of boundary control extremal problems for Maxwell's equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a0/

[1] Cakoni F., Colton D., “The determination of the surface impedance of a partially coated obstacle from far field data”, SIAM J. Appl. Math., 64:2 (2003), 709–723 | MR

[2] Caconi F., Colton D., “A uniqueness theorem for an inverse electromagnetic scattering problem in inhomogeneous anisotropic media”, Proc. Edinburg Math. Soc., 46 (2003), 293–314 | DOI | MR

[3] Cakoni F., Colton D., Monk P., “The electromagnetic inverse scattering problem for partially coated Lipschitz domains”, Proc. Royal Soc. Edinburg. Sect. A, 134 (2004), 661–682 | DOI | MR | Zbl

[4] Cakoni F., Haddar H., “Open problems in the qualitative approach to inverse electromagnetic scattering theory”, European J. Appl. Math., 16:3 (2005), 411–425 | DOI | MR | Zbl

[5] Liu J., Nakamura G., Sini M., “Reconstruction of the shape and surface impedance from acoustic scattering data for an arbitrary cylinder”, SIAM J. Appl. Math., 67:4 (2006), 1124–1146 | DOI | MR

[6] Cakoni F., Colton D., Monk P., “The inverse electromagnetic scattering problem for a partially coated dielectric”, J. Comput. Appl. Math., 204:2 (2007), 256–267 | DOI | MR | Zbl

[7] Angell T. S., Kirsch A., “The conductive boundary condition for the Maxwell's equations”, SIAM J. Appl. Math., 52 (1992), 1597–1610 | DOI | MR | Zbl

[8] Colton D., Kress R., Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verl., Berlin, 1998 | MR | Zbl

[9] Alekseev G. V., Tereshko D. A., Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008

[10] Costabel M., “A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains”, Math. Meth. Appl. Sci., 12 (1990), 365–368 | DOI | MR | Zbl

[11] Costable M., Dauge M., “On resultat de densite pour les equations de Maxwell regularisees dans un domain lipschitzien”, C. R. Acad. Sci. Paris, 327 (1998), 849–854 | MR

[12] Alekseev G. V., Brizitskii R. V., Ekstremalnye zadachi granichnogo upravleniya dlya uravnenii Maksvella s impedansnym granichnym usloviem, Preprint No 1, In-t prikladnoi matematiki DVO RAN, Vladivostok, 2011, 24 pp.

[13] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[14] Sea Zh., Optimizatsiya. Teoriya i algoritmy, Mir, M., 1973