Mots-clés : impedance
@article{SJIM_2011_14_1_a0,
author = {G. V. Alekseev and R. V. Brizitskii},
title = {Theoretical analysis of boundary control extremal problems for {Maxwell's} equations},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {3--16},
year = {2011},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a0/}
}
TY - JOUR AU - G. V. Alekseev AU - R. V. Brizitskii TI - Theoretical analysis of boundary control extremal problems for Maxwell's equations JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2011 SP - 3 EP - 16 VL - 14 IS - 1 UR - http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a0/ LA - ru ID - SJIM_2011_14_1_a0 ER -
G. V. Alekseev; R. V. Brizitskii. Theoretical analysis of boundary control extremal problems for Maxwell's equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 14 (2011) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/SJIM_2011_14_1_a0/
[1] Cakoni F., Colton D., “The determination of the surface impedance of a partially coated obstacle from far field data”, SIAM J. Appl. Math., 64:2 (2003), 709–723 | MR
[2] Caconi F., Colton D., “A uniqueness theorem for an inverse electromagnetic scattering problem in inhomogeneous anisotropic media”, Proc. Edinburg Math. Soc., 46 (2003), 293–314 | DOI | MR
[3] Cakoni F., Colton D., Monk P., “The electromagnetic inverse scattering problem for partially coated Lipschitz domains”, Proc. Royal Soc. Edinburg. Sect. A, 134 (2004), 661–682 | DOI | MR | Zbl
[4] Cakoni F., Haddar H., “Open problems in the qualitative approach to inverse electromagnetic scattering theory”, European J. Appl. Math., 16:3 (2005), 411–425 | DOI | MR | Zbl
[5] Liu J., Nakamura G., Sini M., “Reconstruction of the shape and surface impedance from acoustic scattering data for an arbitrary cylinder”, SIAM J. Appl. Math., 67:4 (2006), 1124–1146 | DOI | MR
[6] Cakoni F., Colton D., Monk P., “The inverse electromagnetic scattering problem for a partially coated dielectric”, J. Comput. Appl. Math., 204:2 (2007), 256–267 | DOI | MR | Zbl
[7] Angell T. S., Kirsch A., “The conductive boundary condition for the Maxwell's equations”, SIAM J. Appl. Math., 52 (1992), 1597–1610 | DOI | MR | Zbl
[8] Colton D., Kress R., Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verl., Berlin, 1998 | MR | Zbl
[9] Alekseev G. V., Tereshko D. A., Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008
[10] Costabel M., “A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains”, Math. Meth. Appl. Sci., 12 (1990), 365–368 | DOI | MR | Zbl
[11] Costable M., Dauge M., “On resultat de densite pour les equations de Maxwell regularisees dans un domain lipschitzien”, C. R. Acad. Sci. Paris, 327 (1998), 849–854 | MR
[12] Alekseev G. V., Brizitskii R. V., Ekstremalnye zadachi granichnogo upravleniya dlya uravnenii Maksvella s impedansnym granichnym usloviem, Preprint No 1, In-t prikladnoi matematiki DVO RAN, Vladivostok, 2011, 24 pp.
[13] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl
[14] Sea Zh., Optimizatsiya. Teoriya i algoritmy, Mir, M., 1973